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ABSTRACT 

Wireless mesh networks are systems of wireless access points interconnected in a 

mesh to provide digital services to client devices via radio transmission.  We consider the 

challenges of quickly and optimally designing a wireless mesh network.  We focus on 

maximizing client coverage area by choice of access point locations, subject to 

constraints on network service, quantity and technical capabilities of access points, 

environmental information, and radio propagation over terrain.  We create a non-

differentiable, non-convex, nonlinear optimization problem to quantify the value of a 

given network, and use a sampling algorithm to quickly find very good solutions.  We 

conduct field tests using commercial equipment in real-world scenarios, and conclude our 

technique can provide working wireless mesh network topologies. 

Our techniques and associated decision support tool can be used by humanitarian 

assistance or disaster relief personnel and combat communications planners to quickly 

design wireless mesh networks.  The decision support tool runs on a laptop computer, 

accepts map data in a generic file format, creates network topologies for virtually any 

type of terrain and mesh access point device, and does not require any additional software 

or solver licenses.   
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EXECUTIVE SUMMARY 

Wireless mesh networks (WMNs) are systems of wireless access points (APs) 

interconnected in a mesh to provide digital services to client devices via radio 

transmission (Zhang et al., 2006, pp. 564-565).  Military and civilian organizations can 

benefit from the advantages provided by WMNs.  During combat operations, WMNs can 

quickly and securely relay time-critical information such as intelligence reports, tactical 

orders, and location sensor readings to separated small units.  During humanitarian 

assistance (HA), and disaster relief (DR) operations, WMNs can provide maps, floor 

plans, video surveillance, emergency aid requests, and other critical information to 

personnel.  The ability of WMNs to reroute traffic dynamically when APs are lost or 

added to the network, and the ability to operate with no infrastructure other than a local 

power source (such as a battery or small generator) makes them particularly well-suited 

to austere environments. 

The physical topology (i.e., the locations of the wireless APs) of a WMN 

critically affects its performance.  Wireless APs must be placed and configured to provide 

service to clients in desired areas, while meeting restrictions on quantity, placement, and 

characteristics of APs, and requirements for redundancy, bandwidth, and other service 

standards.  Consideration must also be given to the effects of terrain and other aspects of 

the operating environment on radio wave propagation.  Since the aforementioned 

applications are highly time-sensitive, the network must be designed quickly and with as 

little guesswork as possible.    

We consider the challenges of quickly and optimally designing a wireless mesh 

network.  We focus on maximizing client coverage area by choice of access point 

locations, subject to constraints on network flow and power allocation, number and 

technical capabilities of APs, environmental information, and radio propagation over 

terrain. 

The imperative to maximize client coverage creates an incentive to place APs 

farther away from one another.  This will reduce or eliminate redundant coverage, 



 xviii 

maximizing the area receiving adequate client service from a wireless AP.  However, the 

constraints of network service and AP capabilities will create an incentive to place APs 

nearer each other.  This will increase AP-to-AP network performance and ensure 

technical constraints are satisfied.  The tension between these competing design goals is 

the core of our optimization problem.   

We decompose the problem into two major subproblems.  The first calculates 

client coverage using the Terrain Integrated Rough Earth Model (TIREM) (Alion Science 

and Technology Corporation, 2007), given AP locations, operating characteristics, and 

terrain and environment information.  The second subproblem determines the optimal 

routing and power allocation scheme to quantify the value of network flow, solved using 

the Simultaneous Routing and Resource Allocation (SRRA) techniques of Xiao et al., 

(2004).  After combining the SRRA and coverage subproblems via a penalty function, we 

name our overall formulation SRRA+C.  SRRA+C is a non-differentiable, non-convex, 

nonlinear optimization problem.  We utilize the DIviding RECTangles (DIRECT) 

algorithm of Jones et al., (1993) to iteratively sample the SRRA+C objective function in 

pursuit of an optimal solution.   

We validate our theoretical results by comparing them to an exhaustive 

enumeration of the solution space, and find the DIRECT algorithm determines excellent 

solutions to the SRRA+C problem very quickly.  We also conduct field tests using 

commercial equipment in real-world scenarios, and conclude the SRRA+C formulation 

can provide working WMN topologies. 

To our knowledge, we are the first to formulate and solve a WMN design problem 

to maximize client coverage, given constraints on network service, quantity and 

characteristics of AP devices, environmental information, and radio propagation over 

terrain.  Our techniques and associated decision support tool can be used by HA/DR 

personnel and combat communications planners to quickly design WMNs to support their 

specific operations.  The decision support tool runs on a laptop computer, accepts map 

data in a generic file format that is widely available on the Internet, creates network 

topologies for virtually any type of terrain and mesh AP device, and does not require any 

additional software or solver licenses.   
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I. INTRODUCTION 

A. WIRELESS MESH NETWORKS: PROPERTIES AND USAGE 

Wireless mesh networks (WMNs) are systems of wireless access points (APs) 

interconnected in a mesh to provide digital services to client devices via radio 

transmission.  These client devices can be laptops, personal digital assistants (PDAs), 

sensor systems, or other electronic devices requiring network connectivity (Zhang et al., 

2006, pp. 564-565). WMNs support any type of digital communication, including email, 

Internet access, file transfer, and voice communication, and they can transmit this 

information rapidly, reliably, and efficiently.   

WMNs can be quickly deployed and configured to fulfill communications 

requirements, and they have several characteristics that make them particularly well-

suited to austere environments (i.e., scenarios where communications infrastructure is 

seriously degraded, destroyed or non-existent).  This includes the ability to reroute traffic 

dynamically when APs are lost or added to the network and the ability to operate with no 

infrastructure other than a local power source (such as a battery or small generator). 

Unlike devices connected to wireless local area networks (WLANs) or ―hotspots,‖ clients 

on WMNs are free to roam from the coverage area of one wireless AP to another without 

loss of service.   

Military and civilian organizations can benefit from the advantages provided by 

WMNs.  The Enhanced Company Operations (ECO) concept of the United States Marine 

Corps (USMC) relies on separation and coordination of tactical units to gain an 

advantage over the enemy.  This concept requires ―voice, data, and surveillance fused 

into a single common operating picture… Tactical units must gravitate from push-to-talk 

radio systems to mobile ad hoc mesh networking‖ (USMC, 2008, p. 5).  WMNs can 

quickly and securely relay time-critical information such as intelligence reports, tactical 

orders, and location sensor readings to separated small units in support of ECO. 
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The Department of Homeland Security (DHS) requires that the public safety 

community have ―the ability to communicate and share information as authorized when it 

is needed, where it is needed, and in a mode or form that allows the practitioners to 

effectively use it.‖  DHS also states, ―Data communications are becoming increasingly 

important to public safety practitioners to provide the information needed to carry out 

their missions‖ (DHS, 2006, pp. 1, 3).  During humanitarian assistance and disaster relief 

(HA/DR) operations, WMNs can provide maps, floor plans, video surveillance, 

emergency aid requests, and other critical information to personnel.   

The physical topology (i.e., the locations of the wireless APs) of a WMN is 

critical to its performance.  Network engineers must place and configure wireless APs to 

provide service to clients in desired areas, while meeting restrictions on number, 

placement, and characteristics of APs, as well as requirements for coverage, bandwidth, 

and other service standards.  Consideration must also be given to the effects of terrain and 

other aspects of the operating environment on radio wave propagation.  Because combat 

and HA/DR operations are highly time-sensitive, the WMN must be designed quickly 

and with as little guesswork as possible.    

B. PROPERTIES OF WIRELESS MESH NETWORKS 

A wireless mesh network consists of fixed APs that use separate radio systems to 

provide two levels of network connectivity (we use the term access point generically for 

any type of wireless mesh transmitter or base station device).  The fixed position of APs 

differentiates WMNs from so-called ―ad hoc‖ networks, where APs can be constantly 

moving (Zhang et al., 2006, p. 565).  The first connectivity level of a WMN supports AP-

to-AP communication, providing the backhaul radio network that routes traffic from 

source to destination.  The second level supports AP-to-client radio communication (see 

Figure 1, below).  Client devices, such as laptops, PDAs, sensors, or other electronic 

devices, can be mobile within the WMN client coverage area.  While a client device is 

roaming within a contiguous coverage area, APs may seamlessly ―hand off‖ the client to 

a more appropriate AP without loss of client network connectivity.  WMNs may connect 

to an outside network or the Internet through a gateway (including via a satellite uplink).   
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Figure 1: Depiction of a wireless mesh network 

WMNs have two important properties that make them particularly useful for time-

critical deployments such as combat and HA/DR operations.  WMN APs, once placed, 

can ―self-form‖ a network with little or no oversight.  AP devices detect the presence of 

other nearby APs, and automatically determine the most efficient method of passing 

traffic within the mesh.  Similarly, WMNs can determine when an AP has been removed 

from the network for any reason, and will automatically adapt or ―self-heal‖ to reroute 

traffic. 

Additionally, WMNs are able to adapt to changing client demand and quality-of-

service (QoS) constraints.  Should a particular AP’s coverage region contain more clients 

or a client requiring more throughput (such as during a video teleconference), the WMN 

will reroute traffic to best satisfy demand.  Note the determination of ―best‖ is often 

dictated by proprietary routing algorithms.   

Figure 2 shows the three different types of WMN architecture.  In the 

infrastructure mesh type of WMN, client devices communicate only to a single AP at a 

time, and hence do not route traffic.  In a client mesh architecture, there are no dedicated 
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APs: each client device serves as both a user terminal and as an AP, routing traffic 

directly to other client devices.  A hybrid mesh architecture consists of both traditional 

APs and client devices capable of serving as APs (Zhang et al., 2006, pp. 564-567).  This 

thesis considers only infrastructure mesh architectures in which wireless APs alone 

provide traffic routing services; clients do not perform any routing.  Additionally, we 

assume that each AP, once positioned, will remain stationary.   

 

Infrastructure Mesh Client Mesh Hybrid Mesh

 

Figure 2: Depictions of the three types of WMNs 

C. RESEARCH PROBLEM STATEMENT 

We consider the task of a communications officer or field technician who must 

quickly decide where to place APs so that the resulting WMN has good performance.  

While the value of a WMN can be measured in many ways (e.g., throughput, power 

usage, financial cost, security, availability or reliability), we focus on maximizing client 

coverage area subject to constraints on network flow. 

The communications officer or field technician faces a fundamental tension when 

designing a WMN.  The imperative to maximize client coverage creates an incentive to 

spread APs far apart.  However, the need for good backhaul communication among APs 

creates an incentive to keep them closer together.  Further complicating the design 
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problem are the technical capabilities of a limited number of APs, background and 

environmental noise, and the complexities of radio propagation over real terrain.   

Given real terrain data and a desired client coverage area, we evaluate the 

performance of proposed AP locations by solving two major subproblems.  The first 

calculates client coverage using a point-to-point path loss propagation model, given AP 

locations, operating characteristics, terrain data and environment information.  The 

second subproblem determines the optimal routing and power allocation scheme for the 

backhaul network, solved using the Simultaneous Routing and Resource Allocation 

(SRRA) techniques of Xiao et al., (2004).  We combine the SRRA and coverage 

subproblems via a penalty function to obtain SRRA+C, a non-differentiable, non-convex, 

nonlinear optimization problem.  We utilize the DIviding RECTangles (DIRECT) 

algorithm of Jones et al., (1993) to iteratively sample the SRRA+C objective function in 

pursuit of an optimal solution.   

We create a graphical decision support tool to solve the SRRA+C problem using 

Microsoft Visual C++ (Microsoft Corporation, 2009).  The stand-alone tool reads and 

then graphically displays digital terrain elevation information, obtains its best solution to 

the SRRA+C problem, displays the resulting network and coverage regions, and 

calculates detailed point-to-point propagation information for any two given points.   

We validate the quality of our results by comparing them to an exhaustive 

enumeration of the solution space, and we find the DIRECT algorithm determines 

excellent solutions to the SRRA+C problem very quickly.  We also conduct field tests 

using commercial equipment, and conclude that WMNs generated from our SRRA+C 

formulation function in real-world scenarios as predicted.   

To our knowledge, this is the first technique to determine WMN AP locations 

given constraints on number and technical characteristics of APs, targeted coverage area, 

service requirements, and the operating environment using an algorithm with guaranteed 

convergence.  Our model and its solution can help decision-makers to quickly design  
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WMNs in support of combat or HA/DR operations, and we can integrate these 

contributions into existing WMN planning tools to quickly provide useful design 

information. 

D. LITERATURE REVIEW OF PREVIOUS WORK 

Previous academic work has developed techniques to design mesh networks using 

various algorithms and heuristics.  None of the existing approaches determine AP 

locations using an algorithm with proven global convergence while satisfying constraints 

of number and characteristics of APs, service requirements, and placement restrictions of 

APs while also utilizing detailed terrain data.   

Calegari et al., (2001) employ three different types of optimization algorithms to 

find the minimum number of transceivers to provide ―good‖ service coverage (around 

90%) to a targeted region.  Their work utilizes a radio propagation tool to determine 

actual site coverage in areas of France and Switzerland, given sets of no more than 150 

candidate transceiver sites.  Their results compare the performance of greedy, Darwinism, 

and genetic algorithms in solving the network design problem. 

Calegari et al.’s greedy algorithm successively adds single APs to the solution set 

to maximally increase service coverage during each iteration.  This algorithm is by far the 

fastest of the three (taking just a few seconds), and provides a very good solution 

requiring 58 transceivers.  Unfortunately, the greedy algorithm is prone to falling into 

inferior local optima. 

The Darwinism algorithm iteratively guesses the number of APs needed, then 

computes the number of shared (overlapping) cells to determine performance.  This 

algorithm not only provided the worst results (requiring 82 transceivers), but also took 

about two minutes to execute. 

The genetic algorithm (GA) assigns possible solutions as chromosomes of 

individuals in a randomly-created population.  Only the fittest individuals are allowed to 

survive to the next generation, with fitness being determined by the percentage of 

targeted service area covered by the solution set chromosome.  Pairs of individuals mate, 

create offspring, and mutate using probabilistic processes.  This algorithm is 
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computationally the most expensive (requiring 24 minutes to execute), and produced 

marginal results of 70 required transceiver locations. 

Calegari et al. also investigate a variation of the genetic approach.  This technique 

divides the population among separate ―islands,‖ and allows the fittest individual on an 

island to replace a probabilistically-selected individual on a nearby island.  This approach 

greatly reduces the computational workload (requiring 4 minutes and 30 seconds to 

execute), and provides the best solution of 57 transceivers.  The technique is also much 

less prone to fall into bad local optima than the greedy algorithm.  As the concept of 

separate islands lends itself to parallel processing, Calegari et al. show that by running 

this algorithm on ten parallel computers, processing time is 7.8 times faster, and will 

execute in 12 seconds on 40 parallel computers.   

Allen et al., (2002) design cellular networks at minimum cost while considering 

constraints of coverage, traffic capacity, interference, and hand-over between cellular 

coverage regions.  They use simulated annealing (SA) iteratively to create candidate 

solutions by perturbing an existing solution.  A candidate solution is selected for the next 

iteration if it produces a better objective value than the original, or probabilistically based 

on a variable denoted temperature, and a cooling schedule.  As the process continues, the 

cooling schedule gradually lowers the temperature, i.e., the probability of choosing a less-

desirable candidate solution for the next iteration gradually decreases as a function of the 

cooling schedule.  Using a realistic-sized network of 40x170 kilometers and nearly 

30,000 coverage test cells, the SA algorithm produces very good results in 119 minutes 

on a 550 MHz personal computer.   

Raisanen and Whitaker (2005) present a novel approach using a multiple 

objective algorithm (MOA) to provide the greatest service coverage at the least financial 

cost.  Their method provides a range of possible solutions that approximates a Pareto 

frontier between these two competing objectives.  They compare four different genetic 

algorithms to solve the multiple objective function: the Strength Pareto Evolutionary 

Algorithm version II (SPEA2) (Zitzler et al., 2001), the Non-Dominated Sorting Genetic  
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Algorithm (NSGA) (Deb et al., 2000), the Pareto Envelope-based Selection Algorithm 

(PESA) (Corne et al., 2000), and the Simple Evolutionary Algorithm for Multiobjective 

Optimization (SEAMO) (Valenzuela, 2002).   

Using realistic-sized problems (up to 45x45 kilometers, with 244 candidate 

locations), they evaluate these four GAs based on obtained objective values, speed of 

convergence, average population spread, and average speed of execution.  This work 

assumes isotropic radiation patterns, and does not consider terrain information.  The 

NSGA-II and SPEA2 GAs performed by far the best, with PESA and SEAMO 

performing considerably worse.  Execution time for the slowest GA on the largest 

problem took roughly 50 minutes.   

Beljadid et al., (2007) construct a mixed integer linear program (MIP) to design 

WMNs that meet location, power, and routing constraints while minimizing cost.  The 

model assumes line-of-site connectivity between APs and does not consider terrain 

information.  Even without these added complexities, the MIP is NP-hard and can only be 

solved exactly for very small idealized networks.  Bhatnagar et al., (2006) show similar 

results: networks of 15 nodes take several days to solve exactly.   

Amaldi et al., (2008) construct three MIPs to determine the number and locations 

of wireless APs that meet restrictions on channel assignment, interference, and traffic 

routing.  They introduce two heuristics to solve the more computationally-expensive 

MIPs to within 5% of the optimum solution.  The first heuristic relaxes several integer 

variables to continuous variables (making the problem computationally easier), and then 

examines neighboring solutions by iteratively adding or deleting wireless APs.  The 

second heuristic iteratively examines solutions by considering interference and traffic 

load.  Amaldi et al., (2008) also use discrete event simulation (DES) to simulate the 

predicted traffic flows of one of their models.  This work does not consider terrain data, 

and assumes propagation patterns are given.   

Sharkey (2008) utilizes ant colony optimization (ACO) to minimize financial cost 

of radio networks to support rural transportation systems.  His algorithm determines the 

location of radio towers to meet restrictions on coverage, bandwidth, maximum delay, 

and redundancy constraints, while utilizing digitized terrain information from the United 
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States Geological Survey (USGS).  Ants are placed at terminal (coverage nodes) of a 

network represented using a minimum Steiner tree.  Each ant, in a randomly selected 

order, then moves toward the global gateway node.  The ants make path decisions based 

on the cost of edges and the strength of pheromones left by previous ants.  Pheromones 

are updated after each iteration based on total path cost.  All ants from the same node 

share a tabu list of edges already visited, causing each to choose a new path.  The ACO 

algorithm provides considerably better results than a 2-approximation algorithm for 

realistic-sized problems.   

He et al., (2004) utilize the DIviding RECTangles (DIRECT) algorithm of Jones 

et al., (1993) to find good AP placements in indoor wireless networks.  They use highly 

accurate (and computationally expensive) ray-tracing techniques to predict radio 

propagation within a building, creating what they dub a site-specific system simulator for 

wireless system design (S
4
W).  We build on the techniques of He et al., (2004) to 

formulate our concept of coverage area, and utilize the DIRECT algorithm in a similar 

fashion. 

Our work also builds upon the Simultaneous Routing and Resource Allocation 

(SRRA) methodology of Xiao et al., (2004).  Their dual decomposition technique solves 

the optimal routing and resource allocation scheme of a wireless network.  That is, given 

AP positions and capabilities, and information about the operating environment, Xiao et 

al., (2004) show how to optimally route network traffic and allocate AP resources (such 

as transmission power) to satisfy several types of objective functions.  We utilize a 

similar framework to calculate network performance within our optimization problem.   

Shankar (2008) also utilizes the SRRA techniques of Xiao et al., (2004) to 

determine optimal jammer placement in WMNs.  He uses the SRRA formulation to 

determine network flow among fixed nodes, and then adopts the attacker-defender 

formulation techniques of Brown et al., (2006) to calculate jammer locations among a 

known set of possible positions to maximally damage this flow.  Our work is a natural 

complement to Shankar’s research, addressing the question of how to design an initial 

WMN.   
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E. STRUCTURE OF THESIS AND CHAPTER OUTLINE 

Chapter II provides a more detailed description of WMNs, and presents some of 

the challenges and techniques of network design.  In Chapter III, we describe our 

problem element by element, gradually building to the overall SRRA+C formulation and 

the techniques we use to solve it, including the DIRECT algorithm.  In Chapter IV, we 

validate each aspect of our formulation, and provide detailed performance results of 

DIRECT in solving SRRA+C.  We also provide the results of field-testing conducted 

using our decision support tool.  Chapter V summarizes our results and provides 

suggestions for follow-on research.   
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II. DESIGNING WIRELESS MESH NETWORKS 

Myriad factors affect the design of wireless mesh networks; it is beyond the scope 

of this thesis to describe them all.  We present a brief overview of the more critical design 

issues, including all those considered in our problem formulation.  We recommend Olexa 

(2005) and Zhang et al., (2006) to the reader who desires more information on WMN 

design, and Balanis (2005) for a very detailed text on antenna theory.   

A. WMN DESIGN CONSIDERATIONS 

Because WMNs are able to self-form, self-heal, and reroute traffic automatically 

based on QoS and client demand, network performance is ultimately a function of AP 

placement.  WMN engineers must determine AP locations to best meet their specific 

design goals.  We detail some of the aspects considered in determining AP location. 

1. Access Point and Client Device Characteristics 

a. Static Characteristics 

We assume the network engineer selects the following AP and client 

device characteristics prior to network employment, and that these aspects do not change 

while the WMN is in use: 

(1)  Antenna Height.  To an extent and depending on transmission 

frequency, the higher an antenna, the farther an AP can propagate its radio signal, since 

most obstructions in the path of the radio waves are close to the ground.  For this reason, 

WMN APs in urban environments are often placed on telephone or traffic signal poles.  

However, a transmitting antenna that is too high may be out of range from a client device, 

even if no object obstructs the path.  For example, a small home AP placed atop a very 

tall building is unable to connect to a laptop three miles away.   

(2)  Antenna Gain.  The gain of antennae is one of the most critical 

aspects in designing WMNs.  The concept of gain incorporates both efficiency and 

direction, and is generally measured in reference to an isotropic transmitter (Balanis, 
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2005, pp. 58-59).  An isotropic transmitter radiates equally in all directions, in a spherical 

shape.  For the purposes of illustration, a simple light bulb can be considered an isotropic 

transmitter (see left side of Figure 3, below).  By placing a cone-shaped reflector on one 

side of the light bulb, much more light is directed in one direction, and much less in the 

opposite (right side of Figure 3).  However, the same total amount of light is leaving the 

bulb itself.  In this case, the cone and light bulb system is exhibiting high gain in the 

direction where light is being cast, and low gain elsewhere.   

 

Figure 3: Analogy of an isotropic antenna (left) and high gain antenna 

The gain of an antenna is the ratio of radiation intensity in a 

particular direction to the radiation intensity in that direction using an isotropic radiation 

pattern.  Gain is generally measured in decibels (dB) or decibels relative to an isotropic 

transmitter (dBi) (Balanis, 2005, p. 60).  The gain stated for a particular antenna is 

usually in the direction of the strongest lobe in its particular radiation pattern.  The gain 

of different types of antennae can be leveraged when designing WMNs: high-gain 

antennae can be used for backhaul connections between APs, and low-gain 

omnidirectional antennae can be used for providing client coverage (Olexa, 2005, pp. 39-

40). 

By the property of reciprocity, in general the radiation pattern of an 

antenna is equivalent to its receiving pattern (Balanis, 2005, pp. 127-132).  That is, an 

antenna with high gain in a particular direction transmits stronger signals and is more 

sensitive to received signals in that direction.  Hence, a high-gain antenna increases 

received signal strength in the same direction and magnitude as transmitted signal 

strength.  Continuing the cone and light bulb example, the surface of the light bulb 

receives more incoming light from the direction opposite the cone.   
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Because total radiation power is conserved, a high gain antenna is 

also very directional.  A flashlight with a focusable lens is an analogy of this 

phenomenon.  By focusing the beam, the light pattern is more tightly concentrated, but 

the beam must be pointed with more precision.  The directionality of a high gain antenna 

increases the number of variables in designing a WMN, as the horizontal and vertical 

(tilt) direction of each antenna must be determined prior to network deployment.  In this 

thesis, we assume all antennae are omnidirectional, and do not consider direction or tilt. 

(3)  Polarization.  The polarization of an antenna describes the 

orientation of its electromagnetic field in relation to the horizon of the earth.  Antennae 

can be polarized horizontally, vertically, or circularly (constantly changing).  It is 

particularly important in line-of-site (LOS) communications (which WMNs can utilize) 

to ensure the transmitting and receiving antennae are similarly polarized (Olexa, 2005, p. 

153).   

(4)  Transmitter Losses.  Within an electronic device, signals are 

degraded by the media through which they flow, including cables, connectors, and other 

electronics.  These losses can be minimized by reducing the distance the signal must 

travel prior to being transmitted or processed, and by using high quality, low impedance 

equipment (Balanis, 2005, pp. 873-874).   

(5)  Transmission Frequency and Bandwidth.  Frequency is the 

number of cycles an electromagnetic wave passes through per second, measured in hertz.  

Bandwidth is the range of frequencies a device can transmit.  Bandwidth and frequency 

determine the maximum amount of information that can be transmitted in a given amount 

of time.  Larger bandwidths are capable of carrying more information.  In general, higher 

frequencies can carry more information, but are more susceptible to attenuation during 

transmission and hence are useful over shorter distances than lower frequencies (Olexa, 

2005, p. 69). 

(6)  Modulation Scheme.  To impress information upon an 

electromagnetic signal, the signal must be modified in some way to represent the 

information.  The most common methods of modulation are amplitude modulation (AM) 

and frequency modulation (FM).  As their names imply, amplitude and frequency 
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modulation respectively vary the amplitude (power) and frequency of a signal over time.  

More complicated modulation schemes include Bi-Phase Shift Keying (BPSK), 

Quadrature Phase Shift Keying (QPSK), and Quadrature Amplitude Modulation (QAM).  

In general, more complex modulation schemes can carry more information, but require a 

stronger signal and more complex electronics (Olexa, 2005, pp. 48-49). 

(7)  Multiple Access Techniques.  In a simple half-duplex or 

―walkie-talkie‖ network, a radio transmits and then waits while the distant side transmits.  

Duplexing combines signals to allow continuous two-way (full duplex) communication, 

where each side is able to essentially transmit and receive at the same time.  Duplexing is 

accomplished by either dividing the available frequencies within the operating 

bandwidth, or dividing the amount of time each device is able to transmit.   

Multiple Access (MA) is an extension of the full duplex idea.  

Rather than just two devices, MA enables multiple devices to communicate concurrently.  

Frequency Division Multiple Access (FDMA) divides the available bandwidth into 

channels, and assigns a channel to devices that wish to communicate.  Each device is able 

to use its assigned channel continuously (see left side of Figure 4, below).  Time Division 

Multiple Access (TDMA) similarly assigns a ―time slot‖ to each device during which that 

device is allowed full use of the available bandwidth.  By quickly cycling through all 

time slots, TDMA-enabled devices can essentially operate continuously (right side of 

Figure 4).  Other types of MA techniques included Frequency Hoping Spread Spectrum 

(FHSS), Direct Sequence Spread Spectrum (DSSS), and Orthogonal Frequency Division 

Modulation (OFDM).  Utilization of any MA technique involves tradeoffs of capacity, 

complexity, and cost (Olexa, 2005, pp. 48-49, 52-54).   
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Figure 4: Illustrations of frequency division (left) and time division multiple 

access schemes 

b. Dynamic Characteristics 

An operating WMN determines traffic routing decisions in real time.  

More specifically, WMN APs must calculate how to route network traffic from source to 

destination while satisfying physical resource limits (such as maximum available transmit 

power) that determine how much and where traffic can be sent.  Hence, routing and 

allocation of available resources at an AP are co-dependent (Xiao et al., 2003).  The 

protocols used to make these decisions are often proprietary and vary widely by 

manufacturer and device.  Some of the characteristics relevant to these decisions include 

the following: 

(1)  Client and QoS Demand.   The number of clients and the type 

of connectivity each uses can vary widely within a WMN.  If one particular area is 

experiencing great demand, APs can adjust routing schemes dynamically to spread the 

burden throughout the network.  Likewise, if a particular client has a higher QoS 

requirement (such as during a video teleconference), it is possible to create a dedicated 

path through the network.   

(2)  Efficiency.  APs can route traffic along the least congested 

path to the destination.  The congestion of any particular path is a function of the current 
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traffic flow, number of hops, required routing overhead (the additional workload required 

to send traffic through a certain path), and other factors. 

(3)  Near-Far Effect.  Consider two client devices communicating 

with an AP at different distances.  All other things being equal, the client device that is 

closer to the AP receives a stronger signal and hence better service than the distant client, 

due to the nature of radio propagation physics.  This phenomenon is known as the near-

far effect.  Several manufacturers have proprietary protocols to reduce its effect and more 

evenly distribute service among clients.   

2. Environment Characteristics 

For a receiver to communicate with a distant transmitter, a radio signal of 

sufficient strength must be received.  Once a radio wave has been emitted from the 

surface of an antenna, the physics of the wave in the operating environment determine 

how it propagates and how strong it is at the receiving antenna.  A full explanation of 

radio physics is beyond the scope of this thesis, but we consider several important 

concepts. 

a. Terrain and Land Use 

In an ideal situation, where there are no obstructions between a transmitter 

and receiver, the signal path is strictly line-of-sight (LOS).  The only loss of signal 

strength is due to free space loss, which occurs because the radio waves gradually widen 

and thus diffuse over distance (Olexa, 2005, pp. 69-70) (see Figure 5 below). 

 

Figure 5: Illustration of wave diffusion as a function of distance 
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In the real world, however, there can be many obstructions in the path of 

the signal.  Obstructions such as buildings and terrain can partially or completely absorb 

a signal before it reaches its intended destination.  Smaller objects, such as tree leaves or 

a passing car, can reflect or partially absorb radio signals.  This can cause fading of the 

entire signal, or selective fading of certain frequencies in the signal (Olexa, 2005, pp. 69, 

73).   

Even obstructions not directly in the LOS path can negatively affect 

propagation.  Fresnel zones are a continuous series of imaginary ellipsoids between 

transmitter and receiver.  The diameter of each Fresnel zone is a function of signal 

frequency and distance from the transmitter.  If an object protrudes significantly into the 

zone, radio waves can bounce off the object and be received out-of-phase from the rest of 

the transmission, potentially degrading or even completely cancelling the signal (see 

Figure 6 below) (Olexa, 2005, pp. 69-71). 

Fresnel Zone

Direct Path

Reflected Path
 

Figure 6: Illustration of the effect of an object in the Fresnel zone 

Fading and Fresnel zone obstructions are collectively known as multipath 

interference.  The effects can be so localized that moving a receiver just inches can 

completely change signal quality (Olexa, 2005, p. 72).  Also, different operating 

frequencies behave very differently: higher frequency waves are generally more easily 

absorbed, while lower frequency waves can be reflected off the earth’s atmosphere to 

increase their range.   
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b. Other Characteristics 

Environmental factors such as humidity, temperature, and surface 

refractivity and permittivity can affect how radio waves propagate.  Background noise—

both man-made and naturally occurring—can also affect the quality of the received 

information.  A strong signal may be received from a transmitter, but high background 

noise can essentially drown it.   

Engineers incorporate a fade margin into network design to account for 

the huge uncertainties of propagation.  Fade margin is essentially a ―slop factor‖ used to 

compensate for the cumulative effects of all signal losses not otherwise estimated.  The 

use of a high fade margin when constructing a WMN leads to a conservative topology 

that is more likely to avoid being overcome by signal loss.   

3. Gauging Network Performance 

Clearly, network engineers must consider many important radio propagation 

properties.  The interaction of these properties, along with system cost and available 

manpower, often create competing demands when designing a WMN.  Systems operating 

at high frequencies can carry more traffic, but may work only over short distances.  

Quadrature amplitude modulation devices can process more information, but are more 

expensive.  Network performance metrics can assist in making decisions between such 

tradeoffs, and quantitatively evaluating the performance of a network.  The following are 

some of the available network performance metrics. 

a. Cost and Profit 

Cost and profit are perhaps the most straightforward methods of 

calculating network performance.  Cost can be calculated by summing the costs of 

equipment, maintenance, operation, and other activities for the network, and is generally 

measured in money or labor.  This metric places a premium on using the simplest, least-

cost technology to satisfy other design constraints.  Beljadid et al., (2007), Allen et al., 



 19 

(2002), and Sharkey (2008) minimize cost in their respective research.  Raisanen and 

Whitaker (2005) balance cost and service coverage.   

The monetary profit generated by a network can be derived from customer 

use.  A premium would be placed on ensuring clients with high bandwidth needs (i.e., 

those who are paying the most) have access to it.  Profit is also a metric in a network 

based on a contract containing service level agreements (SLAs) tied to any other type of 

performance metric.   

b. Power Consumption 

Power consumption is useful as a metric in situations where power is 

scarce or expensive.  For instance, a network designed to support disaster-relief 

operations may require portable generators or batteries as power sources for both APs 

and client devices.  Minimizing the use of power enables the network to be operated for 

longer periods of time and with less fuel or fewer replacement batteries.  A network 

designed to minimize consumption favors both WMN devices that consume little power, 

and propagation paths that do not require large amounts of transmission power to achieve 

desired performance levels (such as short, unobstructed paths). 

c. Throughput 

There are many methods to compute network throughput, in both the 

academic and manufacturer literature.  These include measuring the maximum, 

minimum, or average throughput from any client to the network gateway, or to any other 

client.  Another technique measures the average utilization rate of all links within the 

network.  Still another simply sums the total flow of traffic through the gateway node 

over a specified period of time.   

Higher throughput can be achieved by transmitting more power or at a 

higher frequency, or using a larger bandwidth or a more complex modulation scheme.  It 

can also be achieved by placing APs in locations where their transmitted signals are  
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better received, such as in closer proximity to each other, in areas less affected by path 

loss such as atop hills, buildings, or posts, and in areas less affected by noise, such as 

away from other electromagnetic fields.   

Network throughput can also be a performance constraint.  Beljadid et al., 

(2007), Amaldi et al., (2008), Allen et al., (2002), Sharkey (2008), and this thesis all use 

some measure of throughput as a constraint.  We employ the maximum utility 

Simultaneous Routing and Resource Allocation (SRRA) concept of Xiao et al., (2004) to 

measure network throughput.  This technique is explained in greater detail in Chapter III.    

d. Availability and Reliability 

A network, measured by availability, places a premium on ensuring clients 

are able to access the network a high percentage of the time.  In a related fashion, a 

network measured by reliability places a premium on ensuring that every critical element 

of the network has a low chance of failure (Siewert, 2005).   

e. Client Coverage Area 

Various techniques exist for quantifying and valuing client coverage area.  

For example, an area can be considered covered if it receives a signal strength greater 

than a certain threshold, if it supports a certain amount of client demand, or if it satisfies 

other criteria.  The value of coverage can be determined by the worth assigned to a 

particular client or area, by surface area, or by other metrics.   

Depending on the particular metric, greater coverage can be achieved by 

utilizing techniques similar to increasing network throughput: transmitting more power or 

at a higher frequency, or utilizing a larger bandwidth or a more complex modulation 

scheme.  It can also be achieved by placing APs in elevated, central locations where radio 

emissions have a greater chance of being received, and by placing APs farther from each 

other to increase the total covered area.   

Calegari et al., (2001), Raisanen and Whitaker (2005), Allen et al., (2002), 

Sharkey (2008) and He et al., (2004) all consider coverage in their respective research.  
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We adopt and modify the coverage shortfall concept of He et al., (2004) in this thesis.  

This technique is explained in detail in Chapter III.   

B. CURRENT WMN DESIGN TECHNIQUES 

1. Traditional Solution: Trial-and-Error 

The traditional method of designing WMNs involves trial-and-error site surveys.  

The basic idea is to place a small number of wireless APs in a portion of the desired 

coverage area, and then have a team walk or drive through the area, testing connectivity 

characteristics using network analyzers, client devices, or other tools as they move.  

When they achieve desired results for this sub-area, they add additional wireless APs to 

the network, and the process repeats (Olexa, 2005, pp. 146-147).   

2. Commercial Solutions 

There are several commercial high-fidelity tools for estimating radio propagation 

patterns for wireless APs.  These include the USMC’s System Planning, Engineering, and 

Evaluation Device (SPEED), and Motorola’s MeshPlanner.  The SPEED tool, developed 

by Northrop Grumman Mission Systems, receives as inputs Digital Terrain Elevation 

Data (DTED) maps, transmitter and antenna characteristics, modulation schemes, 

background radiation levels, and many other variables.  Using the Terrain Integrated 

Rough Earth Model (TIREM) of signal propagation (Alion, 2007), SPEED can calculate 

point-to-point coverage characteristics between transmitters (such as signal to noise ratio 

(SNR), received signal strength, and theoretical bit error rate (BER)), as well as provide 

radio coverage analysis (RCA) around single wireless APs to determine client coverage 

areas.   

Motorola’s MeshPlanner has much of the same functionality as SPEED, and 

several major advantages.  The program can utilize much more accurate environment 

information, including files in AutoCAD and shapefile formats.  This allows the user to 

simulate the effects of buildings, vegetation and obstructions on the propagation pattern.  

The program also produces three-dimensional representations of wireless coverage, 
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assisting in designing networks to cover clients in elevated positions, such as towers or 

multistory buildings (Motorola, 2007).   

In practice, network designers use these commercial tools and others in 

combination with site surveys and other tests.  The results are then used to make 

adjustments to the input to the software tools, and the process repeats.   

3. Shortfalls of Current Techniques 

The trial-and-error technique has many drawbacks, the most critical of which to 

our intended purposes are the number of personnel and the amount of time required to 

obtain a working solution.  These two resources are at a premium during both military 

and HA/DR operations.   

Drawbacks to the SPEED program include a coarse 30-meter resolution of the 

terrain data—much too granular for most wireless AP coverage calculations – and the 

inability to include vegetation or manmade obstruction data. 

Most notably, none of these techniques provides suggested wireless AP locations 

with any assurance of a good solution.  A possible upgrade to the SPEED program by the 

Mitre Corporation may utilize simulated random walks to search for good connectivity 

solutions between APs (Shyy, 2008), and MeshPlanner generates AP locations 

automatically using heuristics (Vieira and Stoneback, 2008), but neither utilize an 

algorithm shown to converge to the global optimum.  Essentially, engineers must design 

WMNs based on experience and trial-and-error using these limited support tools. 

C. THESIS OBJECTIVE: RATIONAL WWN DESIGN  

We present a WMN design technique and associated tool that quickly provides 

good network topologies, using an algorithm with proven global convergence.  The 

problem formulation (described in the next chapter) maximizes client coverage while 

considering many of the design constraints described here, including network 

performance, the quantity and technical characteristics of AP and client devices, and 

radio propagation physics.  We further demonstrate these theoretical networks can be 
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practical in a real-world environment.  The design tool can be operated with very little 

technical knowledge, and provides a useful step toward creating a rational, automated 

WMN design system.   

Our formulation allows for a wide range of input parameters, but we purposefully 

avoid requiring assumptions about technology proprietary to a specific manufacturer or 

device.  For instance, antennae of any height or gain may be considered, bandwidth can 

be of any quantity, and operating frequencies may range from 1 MHz to 20 GHz, but we 

do not consider the effects of modulation scheme or routing protocols.  While this general 

focus perhaps reduces the predictive accuracy of our technique, it greatly increases its 

applicability.  Nor is it impossible to modify our technique to incorporate such specific 

parameters, if available.   
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III. MODEL FORMULATION 

A. SOLUTION APPROACH 

We seek the optimal locations of wireless mesh APs to maximize client coverage, 

subject to restrictions on network service, AP characteristics and placement, coverage 

requirements, and radio propagation over terrain.  As noted earlier, there is an inherent 

tension between maximizing client coverage and network traffic flow.  The crux of the 

SRRA+C formulation is to capture and quantify that tension.    

We first describe each element of our formulation separately, building up to the 

entire SRRA+C problem statement.  We then describe how to solve the SRRA+C 

problem utilizing the DIRECT algorithm.  We also present an overview of the decision 

support tool we developed to facilitate solving the SRRA+C problem. 

We define the operating region as the topographic area where the user may place 

APs.  We discretize this operating region into a grid ( , )u v G  where u = 1,2,…U, v = 

1,2,…V.  Each ( , )u v G ordered pair denotes a discrete area with a corresponding 

elevation in meters Euv.  We define the set C (where ( , )u v C G  ) as the coverage 

region, that area within the operating region where client coverage is specifically desired.  

We define an indexed set i N , where N is the set of all AP nodes {1, 2,…n}.  We 

assume our network can be represented as a mesh of AP nodes i emanating from a single 

central node d N , also referred to as the gateway or headquarters node (see Figure 7 

below).  We assume the gateway node is the first node in the set N, and its position is 

fixed in advance.  Once an AP has been placed, we assume it will not move. 
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Figure 7: Discretized operating area and WMN 

Each AP has two radios: one to provide client coverage (gray area), and the other 

to enable a backhaul network between nodes (dashed lines).  Without loss of generality, 

we assume APs are not subject to interference from other APs.   

We assume the vast majority of client network traffic will be directed to or from 

the gateway node d, as this location will connect to the Internet or other outside network, 

and will house email, domain, and storage servers.  Traffic directly between AP nodes is 

permitted; we assume the nodes will route this traffic dynamically.  Hence, we optimize 

our network for traffic flow from client service areas to the gateway node.   

An alternate approach would be to optimize traffic flow from and to every node, 

to create peer-to-peer networks.  While we don’t specifically address this type of 

network, our formulation allows general traffic demands between any number of sources 

and/or destinations.   



 27 

B. CLIENT COVERAGE 

1. Calculating Client Coverage 

We assume the user will define the coverage region(s) ( , )u v C G   and the 

minimum signal strength required for a client to connect to an AP in that region.  We also 

assume client devices and associated network demand are distributed uniformly within 

the defined coverage region.   We desire to maximize total client coverage (which we 

define shortly) within the desired region.  We assume client devices will connect to only 

one AP at any point in time, and each AP can support the client devices within its 

coverage region.   

 One basic method of calculating coverage utilizes ―coverage circles.‖  Using this 

technique, one would neglect the effects of terrain and other obstructions, and simply 

compute a coverage region for each AP based on the area of the circle circumscribed by a 

maximum coverage radius.  This technique is computationally fast, but clearly represents 

an ideal (and very likely unrealistic) scenario, such as a network on a dry lake bed with 

perfect visibility in all directions.  However, this method could be utilized to provide a 

―quick guess‖ towards a solution.   

 We utilize a more accurate method that calculates the received signal strength 

(RSS) at each discrete coverage location ( , )u v C .  Received signal strength ρ at 

coverage region (u, v) from node i in dBm is calculated using the standard link budget 

formula (Olexa, 2005, p. 79): 

                                                                               (1)i

uv tx tx tx fs m rx rxP g L L L g L       

 

where Ptx is transmitted power in dBm, gtx and grx are respectively the gains of the AP 

and receiver in dBi, Ltx and Lrx are respectively the losses (i.e., from cables, connectors, 

etc.) of the AP and receiver in dB, Lfs is free space loss in dB, and Lm is miscellaneous 

loss (such as fade margin) in dB.  We define transmission power between any two APs as  
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a decision variable, and gains, equipment losses, and fade margins as data.  As all terms 

are in decibel form and the Ptx term is a logarithmic function of power in watts, this 

function is monotonic increasing in Ptx.   

Our formulation allows any method of computing free space loss Lfs.  In this 

thesis, we consider three common methods used in network design.  The first method 

computes loss using an inverse-square law.  The loss is simply the inverse of the distance 

squared.  While this method captures some aspect of the diffusion of radio wave power 

over distance, it is in no way an accurate method of determining loss and is used simply 

for testing purposes. 

The second method of determining free space loss is through the Hata COST-231 

model for radio propagation (European Cooperation in the Field of Scientific and 

Technical Research, 1999): 

 46.3 33.9log 13.82log (44.9 6.55log )log1000S H SL f h C h d C        

where L is median path loss in dB, f is transmission frequency in megahertz, hS is sender 

effective height in meters, d is distance in meters, C is a constant in dB (0 for medium 

cities and suburban areas, 3 for metropolitan areas), and CH is the receiver antenna height 

correction factor: 
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where hR is receiver antenna height in meters.  This method provides a good 

approximation of propagation loss and is computationally very quick.  However, it does 

not specifically account for path obstructions, i.e., it does not consider terrain, and it is 

valid only for frequencies between 1.5 and 2.0 GHz.   

A third method utilizes the Terrain Integrated Rough Earth Model (TIREM) of 

Alion Science & Technology Corporation (Alion, 2007).  This commercial tool is the 

same propagation method used in the Marine Corps’ SPEED tool and other commercial 

planning tools such as the Satellite Toolkit of Analytical Graphics, Inc. (2009).  The 
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model utilizes terrain information to compute a path profile between sender and receiver, 

sampling terrain elevation at a given frequency.  This path profile is then used to compute 

propagation loss, considering the effects of free space loss, diffraction around obstacles, 

and atmospheric absorption and reflection.  TIREM also considers the following 

variables: 

 Transmission frequency 

 Transmitter and receiver antenna gain, height, and polarization 

 Conductivity of the earth’s surface 

 Surface humidity 

 Relative permittivity of the earth’s surface 

 Surface refractivity 

The model has a wide range of valid input values; for instance, frequency can vary 

between 1 MHz and 20 GHz, and antenna height can vary between ground level and 30 

kilometers.  While this method is the most accurate of the three, it is also the most 

computationally expensive.   

 A model we do not utilize is the Irregular Terrain Model (Longley and Rice, 

1968).  This model is based on both statistical analyses and actual measurements, and is 

accurate for frequency ranges from 20 MHz to 20 GHz (National Telecommunications 

and Information Administration, 2008).  The model is freely available and is very popular 

in this area of research, but is not valid for distances of less than 1 kilometer and hence 

not suited for most WMN applications. 

2. Calculating the Value of Client Coverage 

In principle, one can compute the value of client coverage as a simple sum of the 

number of discrete regions, which receive a minimal threshold of service.  In this fashion, 

each region would or would not be covered, indicated by a binary decision variable.  This 

method is simple to understand, but the binary decision variables greatly increase 

computational complexity.  
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To avoid creating a mixed integer program, we adopt and modify He et al.’s 

(2004) concept of power coverage.  We assume each coverage region (which need not be 

contiguous) has a minimum coverage threshold ηuv in watts.  Any received signal above 

this threshold results in useable client coverage.  For each ( , ) ,u v C we calculate ρuv
i
, the 

actual received signal strength from node i using Equation (1).  The difference of ρuv
i
  

(converted to watts) and ηuv represents a quantity defined as coverage shortfall at region 

(u, v) from node i.  We wish to minimize this quantity: a positive difference represents 

inadequate power coverage.  Additionally, we can indicate regions where greater network 

demand is expected (or a region of greater importance) by utilizing larger threshold 

values ηuv.  Summarizing, we have 

    Coverage Shortfall
i i

uv uvuv
   . 

As each client device can connect to only one AP at any point in time, we consider only 

the minimum coverage shortfall calculated from each node i.  We allow only positive 

terms, to remove any benefit of ―blasting‖ a particular region with power.  This yields: 

   Coverage Shortfall min i

uv uvuv
 


   

where ()+ denotes the projection onto the nonnegative orthant.  We desire to find the 

coverage shortfall for all possible coverage grid squares ( , )u v C , so we sum over all 

( , ) .u v C   This yields total coverage shortfall: 

   
( , )

                               Total Coverage Shortfall min .                              (2)i

uv uv

u v C

 




 
 

This measure avoids double counting when a particular ( , )u v C receives more than ηuv 

from more than one AP.  It also bounds the amount any region can be penalized: no more 

than ηuv.   

We use total coverage shortfall in our formulation.  Other coverage objectives 

could involve average coverage shortfall (obtained by dividing by the cardinality of the 

set of all coverage grid squares C), and maximum coverage shortfall: 
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   
( , )

1
Average Coverage Shortfall  min i

uv uv

u v CC
 




   

   Maximum Coverage Shortfall  max min .i

uv uv 


  
 

 

C. NETWORK ROUTING AND RESOURCE ALLOCATION 

We formulate a network flow problem to maximize the delivered traffic in bits 

per second (bps) from any node i to the HQ node, given constraints on communications 

resources.  First, we calculate arc capacities between each node and then use this data in 

our network problem.   

1. Calculating Arc Capacities 

In addition to calculating client coverage, we also need to calculate the flow of 

traffic between AP nodes as a measure of network performance.  We use a network flow 

problem (Chapter III.C.3) to optimize these flows, maximizing the flow in the network 

from any node i to the gateway (HQ) node.   

 Flow maximization requires as input arc capacities between AP nodes.  In 

computing arc capacity, we can ignore many of the effects of a particular device’s actual 

hardware and software characteristics by using the Shannon capacity formula (1949), 

which establishes a theoretical upper bound on radio link capacity in bits per second: 

2( ) log 1 (3)
ij

ij

ij

Signal
                                        Capacity B     (i,j) A                            

b

 
     

 

 

where B is the channel bandwidth in hertz, and Signalij and bij are respectively the signal 

power and background noise power in watts or volt
2
 from node i to node j.  We desire to 

calculate the received signal capacity, so the Signal term is calculated using the antilog of 

the link budget formula (Equation 1).  Following Xiao et al., (2004), this yields: 
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2( ) log 1 (4)
ij

ij ij

ij ij

g
                                   Capacity B P     (i,j) A                               

b l

 
     

 

 

where gij is the sum of the antilog gain terms, lij is the sum of the antilog loss terms, and  

Pij  represents the fraction of a finite resource (in this case, transmission power in watts) 

used to transmit from i to j.  We assume   

:( , )

(5)ij

j i j A

                                                             P p                                                           




 

that is, the sum of all resource fractions is less than or equal to a constant representing the 

total available resource. 

2. Calculating the Value of Delivered Network Flow 

We measure an individual traffic flow in bits per second.  However, we need to 

assess the value of all flows across the network.  One approach is to simply compute the 

sum of all delivered traffic from all APs to the HQ node.  Let Si
d
 be the total flow of 

traffic from source node i N  to destination node .d D   Then  

   d

i

d i d

Total Network Flow S


 . 

In this case, all traffic is valued equally, independent of other traffic levels.  As long as 

the total volume of traffic is large; it doesn’t matter which source-destination pairs are 

passing traffic (or not).   

Another approach is to consider minimizing network flow shortfall, in a fashion 

similar to our coverage shortfall formulation.  Let min_flow be the minimum flow 

delivered between any outlying AP and the HQ node.  Then  

  

    d

i

d i d

Total Network Flow Shortfall min_flow S




  . 
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This objective function is appealing because desired network performance can be 

specified through a concrete number.  However, our testing reveals that this method 

causes problems when solving our network formulation (described in the next section).  

Specifically, the ability of our problem to converge is extremely sensitive to choices of 

min_flow.  For these reasons, we abandon consideration of this alternative method.   

An alternate approach adopted by Xiao et al., (2004) is to consider the utility of 

delivered traffic.  Specifically, they use a log-utility function which places a zero value 

on unit flow, positive values on flows greater than one, and negative values on flows less 

than one: 

   2log d

i

d i d

Utility of Total Network Flow S


 . 

This utility function promotes fairness between flows: the penalty for small flows 

encourages the assignment of at least unit flow to all source-destination pairs.   

3. Simultaneous Routing & Resource Allocation Formulation 

We use Xiao et al.,’s (2004) Simultaneous Routing and Resource Allocation 

(SRRA) technique to calculate a value of network flow.  Our goal is to maximize the 

utility of network flow from each node to the central HQ node.  We assume AP locations 

are given, the communications terms gij and lij are pre-calculated, and total transmission 

resource p is a fixed quantity representing transmission power in watts available at each 

AP. 
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SRRA Formulation 

Index Use 

 i N   node (alias j, k) 

 ( , )i j A  arc (link) 

 d D N   destination node 

  

Calculated Data  

 
gij  

product of antilog gain terms from i N  to j N   [none] 

 
lij  

product of antilog loss terms from i N  to j N    [none] 

 pi  maximum total transmission power per node   [watts] 

 B  channel bandwidth      [hertz] 

 bij  background noise power from i N  to j N   [watts] 

 

Decision Variables 

 d

iS   total flow of traffic from i N  to destination d D  [flow] 

 d

ijX   traffic flow along arc ( , )i j A  to destination d D   [flow] 

 ijT   total flow vector along arc ( , )i j A     [flow] 

 Pij  total transmission power along arc ( , )i j A    [watts] 

 

Formulation 

 
 2

, , ,
max log                                                                                                   (S0)d

i
S X T P

d i d

S


  

s.t. 
:( , ) :( , )

(S1)d d d

jk ij j

k j k A i i j A

X X =S        j N , d D                                              
 

     
 

 

 (S2)d

ij ij

d

T = X                                  (i,j) A                                                          

 2log 1 0 (S3)
ij

ij ij

ij ij

g
T B P       (i,j) A                                                          

b l

 
      

 

 
:( , )

(S4)ij i

j i j A

P p                             i N                                                             


  

 
0 ( , ) (S5)ijP                                        i j A                                                          

 
0 ( , ) , (S6)d

ijX                                       i j A  d D                                           

 
0 ( , ) (S7)ijT                                         i j A                                                       

 
 0 (S8)d

iS                                            i d                                                                  
 

 

 

Discussion 

The objective function (S0) maximizes the sum of utilities for each traffic flow.  

Constraint (S1) ensures balance of flow at each node.  Constraint (S2) defines the total 

flow along any arc to equal the sum of all traffic flows along that arc.  Constraint (S3) 
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ensures traffic flow along any arc is less than or equal to the capacity of that arc.  

Constraint (S4) bounds total transmission power per AP by available resource.  

Constraints (S5-S8) ensure non-negativity. 

4. Dual Decomposition Technique 

Xiao et al., (2004) observe that due to its layered structure (i.e., the routing and 

resource allocation decisions), this problem can be solved via dual decomposition.  We 

follow their construction.  By introducing the Lagrange multipliers ( , )ij i j   for the 

routing and resource allocation constraint (S3), we obtain the partial Lagrangian 

2 2

( , )

               ( , , , , ) log ( ) log 1 .             (6)
ijd

i ij ij ij

d i d i j A ij ij

g
L S X T P S T B P

b l
 

 

  
       

  
 

 

We minimize this by choice of α: 

 min ( , , , , )L S X T P


 . 

The objective function of the dual problem can then be evaluated via the network 

flow variables S, X, and T, and the communications variable P: 

2
, ,

                                           ( ) ( ) ( )                                                      (7)

                                ( ) max log ( )        

flow comm

d

flow i ij ij
S X T

d i d

V V V

V S T

  

 


 
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( , )

2

( , )

                                 (8)

                               ( ) max log 1                                         (9)

i j A

ij

comm ij ij
P

i j A ij ij

g
V B P

b l
 





 
   

 





 

The representation of the capacity constraint (Equation 4) is a logarithmic function and 

hence meets the assumptions of Xiao et al., (2004) of a concave and monotone increasing 

capacity function.  Xiao et al., (2004) also assume that Slater’s condition for constraint 

qualification is satisfied: 
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2                                          log 1     ( , )                                    (10)
ij

ij ij

ij ij

g
T B P i j A

b l

 
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 

 

that is, the total flow of traffic along a link is strictly less than the maximum capacity of 

that link.  They claim this assumption is ―almost always true in practice.‖  Combined 

with their observation that the dual function V(α) (Equation 7) is always convex, Xiao et 

al., (2004) conclude that strong duality holds, i.e., the solution to the dual and primal 

problems are equal. 

 Xiao et al., (2004) observe that since the objective function of the primal problem 

is not strictly concave in the variables X and T, the dual function is only piecewise 

differentiable, and hence a non-differentiable convex optimization problem.  They apply 

the subgradient method to obtain a solution.  Similar to the gradient method, this method 

uses the subgradient rather than the gradient (which may not exist or is too difficult to 

compute).  Each iteration of the subgradient method might not necessarily improve the 

dual objective value, but each iteration reduces the distance to the optimal solution 

(Bertsekas, 1999, p. 621).   

Xiao et al., (2004) evaluate each component of V(α) separately.  The solution of 

( )flowV  (Equation 8) is computed via the network flow subproblem, and the solution of 

( )commV   (Equation 9) is computed via the resource allocation subproblem.  Xiao et al., 

(2004) observe that both subproblems are convex optimization problems with special 

structure lending themselves to very efficient computational techniques.   

a. Network Flow Subproblem 

We solve the network flow subproblem (defined below) as a 

multicommodity flow problem. 
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Network Flow Subproblem 

2
, ,

( , )

:( , ) :( , )
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       0                        

d

ij ij

d

d
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T X i j A

X
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

             ( , ) ,  d                                                 (F3)

       0                                      ( , )                                                               (ij

i j A D

T i j A

   

   F4)

       0                                                                                                             (F5)d

iS i d 

 

Discussion 

The objective function (F0) maximizes the difference of the sum of utilities for each 

traffic flow and the costs associated with the total flows along each arc.  Constraint (F1) 

ensures balance of flow at each node.  Constraint (F2) defines the total flow along any arc 

to equal the sum of all traffic flows along that arc.  Constraints (F3-F5) ensure non-

negativity. 

By substituting the Tij term in the objective function with d

ij

d

X , the 

problem can be solved for each fixed commodity (destination) d̂ : 

ˆ ˆ
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
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 

 

ˆ    i d

 

 

We next consider the total cost of sending flow over different paths from source node i to 

destination node d.  Let Bk denote the k
th

 path from i to d, and let Yk denote the total flow 

sent along path Bk.  Then 

( , )

(
k

k

B ij

i j B

Total Cost Per Unit Flow) 


   

and  



 38 

( , )

(
k

k

B k ij

i j B

Total Cost of Flow) Y 


  . 

Summing over all paths from i to d, the contribution to the objective function can be 

rewritten as 

2

( , )

log
k

k k ij

k k i j B

Y Y 


 
 

 
   . 

 

This objective is maximized when the marginal utility equals the marginal cost.  For any 

path Bk, this maximum is reached at the point 

 

2

( , )

log
k

k ij

i j Bk

d
Y

dY




  . 

 

Proposition:  For each source-destination pair (i,d), the optimum solution is to send flow 

only along the shortest (lowest cost) path(s) from i to d.  Thus, solving for optimal flows 

from i to d is achieved by calculating the shortest path(s) and solving for first order 

conditions. 

 

Proof:  Consider two paths B1 and B2 from i to d with respective costs c1 and c2, where c1 

< c2.  Flow Y1 should be pushed along path B1 as long as the marginal benefit is greater 

than the marginal cost, i.e.,  

2 1 1

1

log
d

Y c
dY

 . 

The stopping point is reached at equality, as pushing additional flow beyond this point 

results in greater cost than benefit.  Increasing delivered flow along B2 costs at least c1 

per unit (since c2 > c1), and generates marginal benefit no greater than c1.  Thus, the 

optimal solution is to push Y1
*
 only along path B1.   
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If multiple shortest paths exist (e.g., there exists a path B3 for which c3 = c1), the optimal 

solution is to push any convex combination of nonnegative flows totaling Y1
*
 along these 

shortest paths, and no flows along strictly longer paths.  Q.E.D.   

The ability to send flow along multiple shortest paths (if they exist) is 

required for our problem to converge under the subgradient method.  We use a 

modification of the Floyd-Warshall algorithm that can store all shortest paths from i to d, 

and use the associated path costs to solve for the optimal flows 

 

* 1

ln(2)

d

k i

k

Y S
c

    

 

where ck is the lowest cost path k, namely, the smallest α between node i and d.  If 

multiple shortest paths do exist for any (i, d), we split the optimal flow evenly among the 

paths. 

The following pseudo-code solves the network flow subproblem.  

 

Algorithm Network Flow 

Input: Node and arc adjacency lists; maximum transmit power p; α values for each arc. 

 

Output: Network flow values for all transmission links 
 

begin 
 Calculate arc costs 

 Calculate all shortest paths for all ( , )i j A using Floyd-Warshall algorithm 

 for (all (i, d))  

  Calculate total delivered flow Si
d
 from each i N  to all d D  

  Calculate flow Xij
d
 along each  ,i j A  to all d D   

   

 next (i, d) 

end; 
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b. Resource Allocation Subproblem 

The resource allocation subproblem determines transmitted power Pij and 

can be expressed as follows: 

Resource Allocation Subproblem 

2

( , )

:( , )

max log 1                                                                                    (R0)

. .                                               

ij

ij ij
P

i j A ij ij

ij i

j i j A

g
B P

b l

s t P p i N






 
  

 

  



                                                  (R1)

        0                                 ( , )                                                                  (R2)ijP i j A  

 

Discussion 

The objective function (R0) maximizes the sum of the capacities of each arc.  Constraint 

(R1) bounds total transmission power per AP by available resource.  Constraint (R2) 

ensure non-negativity. 

We solve this nonlinear, concave, differentiable problem by using a 

resource allocation algorithm described by Luss and Gupta (1974).  The method allows 

us to solve for each AP power allocation scheme separately.  Let k = 1, 2,…R be the set 

of all adjacent arcs ( , )i j A to the AP in question.  Let ak and ck  represent the lower and 

upper bounds of Pk.  In the above formulation, ak = 0 and ck  = pi.  Let DQ(Pk) be the 

derivative of the objective function at Pk. 

  By applying the Kuhn-Tucker conditions, Luss and Gupta (1974) derive 

that a necessary and sufficient condition for P
*
 to be an optimal solution is that there 

exists a Lagrange multiplier M such that: 

 

 

*

* *

(11)k k k

k k k k

                                                     P a DQ a M                                             

                                                a P c DQ P M                      

  

   

 *

1

(12)

 (13)k k k

k

k

                    

                                                     P b DQ c M                                             

                                                        P


  

 (14)
R

ip    i N.                                                  
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Equations (11-13) establish bounds on M based on the optimum value of P.  Equation 

(14) requires the sum of all transmission powers to equal the total possible transmission 

power, i.e., all available transmission resources are utilized. 

Luss and Gupta (1974) show that if    1k kDQ a DQ a  for k = 1, 2,…R-

1, then there exists an integer q, 1≤q≤R, such that Pk
*
 > ak , k=1, 2,…q, and Pk

*
 = ak , 

k=q+1, q+2,…R.  By reordering the derivatives DQ(ak) in this manner, we ensure Pk
*
 > 

ak (the optimal power allocation is strictly greater than the lower bound of zero) and 

DQ(Pk
*
) =  M(q), where 

    *

1

(1/ )
R

k

k

M q q DQ P


  . 

The optimal solution Pk
*
 can therefore be found by finding a closed-form 

expression for M(q).  First, we solve for Pk
*
 as a function of M(q).  The derivative of the 

objective function is 

( )

ln(2) 1

k
k

k k
k

k
k

k k

g
B

b l
DQ P    k R

g
P

b l



  
 
 

 

. 

Since the derivatives are ordered, DQ(Pk
*
) =  M(q) and we solve for Pk

*
 as a function of 

M(q):  

*

ln(2) ( )

k k k
k

k

B b l
P    k R

M q g


    . 

To find a closed-form expression for M(q), we first simplify the derivative: 

*

*

( ) ( )

ln(2)

k
k

k k
k

k

B
M k DQ P    k R

b l
P

g


   

  
  
  

. 

Next, we sum over all k=1, 2,…q:   
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1
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By the above results, we can replace *

1

q

k

k

P


 with 
R

i k

k q

p a


 , yielding 

1

1

( )

ln(2) ln(2)
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b l
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 

. 

Since the lower bound on transmission power ak = 0, this expression simplifies to 

1

1

( )

ln(2)

q

k

k

q

k k
i

k k

B

M q
b l

p
g







  

  
  





. 

To solve for the optimum value of q, one must iteratively increase q by one until the 

condition 

  1 ( )kDQ a M q   

is no longer true, or until k equals the number of adjacent arcs R.    

Building on Luss and Gupta (1974), the following pseudo-code solves the 

resource allocation subproblem.  
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Algorithm Resource Allocation 

Input: Node and arc adjacency lists; maximum transmit power p; gain, loss and α values 

for each arc; channel bandwidth B, background noise b 

 

Output: Power allocations for all arcs 

 

begin 
 Reorder derivatives 
 Set k = 0  

 do 
  k = k + 1 

  Calculate M(q) 

  if (k < R) 

   Calculate DQ(ak+1) 

  end if;   

 while (  1 ( )kDQ a M q  and k < R) 

 end; 

 Calculate Pk
*
 for all adjacent arcs 

end; 

 

c. Utilizing the Subgradient Method 

The subgradient of the non-differentiable convex function V(α) is a vector 

h such that 

 ( ) ( ) ( )    V V h        . 

Let X
*
(α), T

*
(α), and S

*
(α) be an optimal solution to the network flow subproblem at α, 

and let P
*
(α) be an optimal solution to the resource allocation subproblem at α.  Then the 

subgradient h of V(α) is  

 * *

2log 1 ( ) ( )
ij

ij ij ij

ij ij

g
h B P T

b l
 

 
    

 

 

where hij are the components of the subgradient h defined for each ( , )i j A .  One can 

interpret the subgradient as the excess capacity on each arc.   
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To solve the dual problem via the subgradient method, we select an initial 

value of α
1
 (we use 

ij

ij ij

g

b l
), and for each iteration k = 1, 2, 3, …, we compute the dual 

function V(α
k
) and subgradient h

k
.  We then update the dual variable α according to 

  1k k k

kh  

   

where δk is the stepsize of iteration k and ()+ denotes the projection onto the nonnegative 

orthant.  We use a stepsize rule of  

2|| ||

k

k

ij

a

h
   

where  

1k m
a

k m





 

and m is a fixed positive integer (we use 1000).  This stepsize rule follows the conditions 

for a diminishing stepsize (Bertsekas, 1999, p. 624), namely 

1

0,k k

k

a     a




  . 

We stop the method after a given number of iterations (typically 500), and 

use the best solution found as an approximation of the solution to the SRRA problem 

(and an estimate of network performance).  We explain this in further detail in Chapter 

III.D. 

5. SRRA Algorithm 

Building on Xiao et al., (2004), the following pseudo-code solves the 

simultaneous routing and resource allocation problem using the subgradient method.  
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Algorithm SRRA 

Input: Stopping criteria (max_iterations) 

 

Output: Optimal routing and power allocations for all transmission links 

 

begin 
 Select initial α values  

 while (k < max_iterations) 
  call Algorithm Network Flow (calculates Xij

d
 values) 

  Calculate d

ij ij

d

T = X      (i,j) A 
 

  Calculate d

iS        i N , d D   

   Calculate 2

( , )

( ) log ( )d

flow i ij ij

d i d i j A

V S T 
 

    

  call Algorithm Resource Allocation (calculates Pij values) 

  Calculate 2

( , )

( ) log 1
ij

comm ij ij

i j A ij ij

g
V B P

b l
 



 
   

 
  

  Calculate *

2log 1 ( )     ( , )
ij

ij ij ij

ij ij

g
h B P T i j A

b l


 
      

 

 

  Calculate δk   

  Calculate  1k k k

kh  


   

 end; 

end; 

D. SRRA+C FORMULATION 

1. Weighted Multiple Objective Function 

We return to our overall objective of maximizing coverage area (or more 

specifically, minimizing coverage shortfall), subject to constraints on number and 

operating characteristics of APs, network flow requirements, and the operating 

environment.  The DIRECT optimization algorithm (described below) requires the 

objective function to be continuous; to meet this requirement, we enforce a lower bound 

on network service using a soft constraint.  Greater network flow results in greater benefit 

(i.e., smaller penalty) to the objective function: 

      Overall Objective Function Total Coverage Shortfall w Network Flow   
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where w is a positive scalar (in units of dBm/log2bps) representing the relative weight 

placed on network flow.  Larger values of w place more emphasis on network flow, and 

in general increase the desirability of more compact network topologies.  Clearly, the 

order of magnitude of w depends on the relative values of coverage shortfall and network 

flow.   

We solve total coverage shortfall using the definition in Chapter III.B, and 

network flow using the SRRA formulation.  Both are functions of AP locations.  Let ζ be 

the locations of all APs for a particular network, and let Ω be the overall objective 

function.  Thus, 

2
, , ,

( , )

( ) min( ) max log ( ). (15)i d

uv uv i
S X T R

u v G d i d

                            w S                          

 

      

The SRRA+C problem is to minimize the objective value Ω by choice of AP locations ζ.  

The objective function is in units of dBM, although the combined objective value has no 

direct practical implication.  Rather, the objective value serves as a relative method of 

comparing different network topologies.   

 Note that this formulation does not directly relate the values of client coverage 

and backhaul network flow.  This follows from our assumption that all APs have 

different radio systems to provide client coverage and backhaul connectivity.  These 

radios have separate resource constraints and can utilize different networking algorithms.  

This implies that a change to client coverage area (even if client distribution is uniform) 

does not necessarily result in a change to backhaul network flow: APs can have 

proprietary algorithms that may reduce client coverage area with demand, or maintain the 

area by reducing the amount of service each client receives. 

2. Bounding the SRRA+C Problem 

Four values bound the overall objective function in Equation (15), namely the 

respective upper and lower bounds of coverage shortfall and network flow.  These help 

us to understand the limits to the possible improvement of any solution, (though as we 

show, this boundary may be infeasible). 
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At one extreme is ―perfect‖ client coverage: every discrete grid square ( , )u v C  

receives an RSS of at least ηuv, so the coverage shortfall value is zero.  At the other 

extreme, we have the exact opposite: no grid square receives any signal, so the coverage 

shortfall value is 
( , )

uv

u v C




 . 

The lower bound on total delivered network flow d

i

d i d

S


  is zero.  The upper 

bound depends on the capacity of the given network with virtually no propagation loss 

between APs.  (This is equivalent to placing all APs at essentially the same location.)   

These four bounds provide a two-dimensional representation of the solution space 

(see Figure 8).  The horizontal axis represents the value of coverage, and the vertical axis 

represents the value of network flow.  A solution on the left vertical axis has perfect 

coverage, and a solution on the upper horizontal axis has perfect network flow.  Note that 

it is highly unlikely for a solution to appear at the upper-left corner of this bounded 

solution space.  Such a ―perfect‖ solution may consist of a very small coverage region 

receiving service from an overabundance of co-located APs, or perhaps an arbitrary 

coverage region literally completely covered in APs.  We consider this theoretical lower 

bound in Chapter IV.B.4, and in Chapter IV.B.5 we create a Pareto frontier in this 

solution space that can provide useful information on the value of any solution.   
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Figure 8: The boundaries of the SRRA+C solution space 

3. Solving the SRRA+C Problem 

Thus far, we have described how to quantify the value of a network using the 

SRRA+C formulation given AP locations, but not how to actually choose those locations.  

For a finite number of discrete AP locations, an exact method of solving the SRRA+C 

problem is through enumeration, i.e., trying all possible AP placement solutions.  We 

show this technique is very inefficient. 

Recall that the operating area (that area where APs may be placed and coverage 

may be desired) is discretized into a U x V grid.  There are n total APs and the position of 

the first (the HQ node) is given, so the total number of unique AP locations ζ is 
1

UV

n

 
 

 
.  

This exponential growth in both UV and n of the solution space makes for a very large 
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number of solutions.  For the purposes of illustration we consider a small operating 

region of 20x20 = 400 grid squares.  The below table shows the growth of the solution 

space with the number of APs, and the time required to solve the associated SRRA+C 

problem using our decision support tool (described in Chapter III.G) via enumeration 

using a Windows XP laptop with an Intel Core 2 Duo processor operating at 2.16 GHz 

and 2 GB of RAM: 

APs Number of Solutions Processing Time 

2 400 3 sec, 415ms 

3 79,800 17 min, 1 sec, 504 ms 

4 10,586,800 2 days, 11 hours, 9 min, 53 sec, 523 ms 

5 1,050,739,900 245 days, 5 min (extrapolated) 

Table 1: Exponential growth of processing time using enumeration 

Clearly we need a faster, more efficient solution method if SRRA+C is to be incorporated 

into the network design process.  The DIRECT algorithm meets this need. 

E. DIVIDING RECTANGLES OPTIMIZATION 

The DIviding RECTangles (DIRECT) algorithm of Jones et al., (1993) is a 

sampling optimization algorithm.  The approach is similar to Lipschitzian optimization 

(Horst and Hoang, 1996, pp. 43-46), but without the requirement of specifying the 

Lipschitz constant.  The algorithm also requires no knowledge of the objective function 

gradient, which makes it appealing in solving our problem where the effects of terrain 

and radio propagation make for a very complex function.   The algorithm iteratively 

samples points within the domain, choosing these points based on the unexplored 

territory of the function and the previously calculated sample function values.  The 

algorithm stops after a defined number of iterations.   

He et al., (2004) use the DIRECT algorithm to solve an indoor wireless AP 

placement problem.  They utilize very accurate but computationally expensive ray-

tracing to calculate radio propagation, placing a premium on the number of required 

iterations.  They conclude the DIRECT algorithm is an efficient means of finding good 

solutions relatively quickly.   
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The DIRECT algorithm is guaranteed to reach a global optimum if the objective 

function is continuous (Jones et al., 1993).  To meet this requirement, we use bilinear 

interpolation to create a continuous solution space from our discrete map data. 

1. Bilinear Interpolation 

Bilinear interpolation is a common image processing technique that utilizes the 

four nearest neighboring points to calculate the intensity (in this case, elevation) of a 

given point (Gonzalez and Woods, 2007, p. 66).  The technique provides adequately 

smooth elevation information, without the added computational load of bicubic 

interpolation or splines.   

Recall we assume elevation E is a function of location uv.  We desire to find the 

elevation of a point Exy, indicated by a double circle in Figure 9.  The four nearest known 

points are (x1, y1), (x1, y2), (x2, y1), and (x2, y2), indicated by open circles.  Their 

corresponding function values (elevations) are 
1 1 1 2 2 1 2 2

, , ,x y x y x y x yE E E E . 

x

y

P1

P2 P3

P4

R1

R2

y2

y1

x

1

x

2  

Figure 9: Example of bilinear interpolation 

We first interpolate in the x direction, to find the heights of the intermediate 

points R1 and R2, located at (x, y2) and (x, y1): 
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We then interpolate in the y direction to determine the height of the desired interpolant Q: 
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Replacement yields:  
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2. Theoretical Basis of DIRECT 

Jones et al., (1993) build on Lipschitzian optimization to create the DIRECT 

algorithm.  Essential to Lipschitzian optimization is the assumption that there exists a 

finite positive constant k that bounds the maximum rate of change of the function.  That 

is, 

 ( ) ( ) ' [ , ]f x f x k x x    x,x s t       

where [s, t] are bounds within the domain of f, the objective function to be minimized.  

With this assumption, k can provide a lower bound on the minimum of f within [s, t].  

Figure 10 demonstrates this graphically (many of the following figures are based on or 

embellish figures presented by Jones et al., 1993).   
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x

f(x)

s t

slope = kslope = -k

 

Figure 10: Interval sampling of Lipschitzian optimization 

The minimum value of f(x) within [s, t] must be above the two dashed lines formed by the 

given maximum rate of change k intersected at s and t, respectively.   

The Shubert (1972) algorithm raises the lower bound on the function by 

iteratively dividing the search space.  Let b denote the x location where the two lines of 

slope k intersect, and let f(b) denote the value of the function at this point (see Figure 11).   

x

f(x)

s tb

f(b)

 

Figure 11: First sample in Shubert algorithm 
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The search space can be divided by creating two intervals [s, b] and [b, t], with 

new associated lower bounds and f(b) values based on k.  The partition with the smallest 

f(b) is selected for the next iteration (ties are broken arbitrarily).  This newly selected 

partition is again split into two, and the process repeats until the specified stopping 

conditions are met.  The process is graphically demonstrated in Figure 12.  In Figure 12a, 

the initial lower bound region is split into two at b.  The left region is chosen to be split in 

Figure 12b, yielding two new lower bound regions.  The process continues in Figure 12c.   

x

f(x)

s tb1 b2

x

f(x)

s tb3 b2b4

x

f(x)

s tb3 b6b4 b5

(a) (b) (c)

Figure 12: Illustration of Shubert algorithm 

 Jones et al., (1993) discuss two problems with the Shubert method.  The first is 

that the rate of convergence is a function of the value of k, and this value is generally 

large.  A larger k results in a larger area underneath a particular interval, causing a more 

global search and slower convergence.  A smaller k searches locally, but may converge to 

a local minimum if the value is too small.  Hence, the parameter must be carefully chosen 

to balance global and local search scope.  The value can be reduced during the course of 

the algorithm, but it is not immediately apparent when it is appropriate to do so. 

The second problem relates to the sampling method.  The upper and lower 

endpoints of each dimension of a given interval must be sampled to calculate a lower 

bound.  In the one-dimensional examples above only two samples are required, but this 

sampling per interval grows linearly with the number of dimensions.  This quickly  

becomes computationally expensive, as the objective function is often complex and time-

consuming to calculate.  The DIRECT algorithm of Jones et al., (1993) addresses both of 

these problems.   
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3. Center-Point Sampling 

To alleviate the complexities of sampling from each end of each dimension for a 

given interval, Jones et al., (1993) sample from the center of a given interval.  Thus, the 

number of required sampling points per interval does not grow with the number of 

dimensions.  Figure 13 demonstrates this in one dimension for a given k. 

x

f(x)

s tb

f(b)

slope = k slope = -k

 

Figure 13: Illustration of center-point sampling 

4. Rate of Change Constant 

To overcome the problem of a fixed k, Jones et al., (1993) consider the objective 

value of a particular interval versus the interval’s dimension size.  Let f(ci) denote the 

function value of a particular interval i at the center point c, and let di denote the distance 

from the center point to the edge of an interval’s dimension (i.e., di = (ti – si)/2).  Figure 

14 plots f(ci) versus di for various intervals (represented as dots). 
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di

f(ci)

slope = k

 

Figure 14: Interval function value versus size 

Jones et al., (1993) observe that the vertical axis represents goodness with respect 

to local search: lower f(ci) values are closer to the actual global minimum.  The horizontal 

axis represents goodness with respect to global search: larger di values have more 

unexplored territory in their respective intervals.  The lower bound for any interval can be 

found by intercepting a line of slope k through the point of the desired interval with the 

vertical axis.   

Jones et al., (1993) use this concept of goodness to introduce a rate-of-change 

parameter k to vary the scope of search.  The k value can be changed during the course 

of the algorithm to find those intervals which are potentially optimal.  Jones et al., (1993) 

define an interval i to be potentially optimal if there exists some 0k    such that 

   

  min min

1,... (16)i i j j

i i

                                         f c kd f c kd    j m                                           

                                                   f c kd f f              

    

   (17)                               

 

where fmin is the current best value, and ε is a small positive constant.  Equation (16) 

ensures that only those intervals on the lower-right of the convex hull of intervals can be 

potentially optimal.  Equation (17) ensures that potentially optimal intervals must exceed  
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the current best objective value by a nontrivial amount (otherwise the search becomes too 

local).  Jones et al., (1993) show that ε values between 10
-3

 and 10
-7

 yield good results; 

we use 10
-4

. 

Intervals that meet these two conditions are displayed as open dots in Figure 15.  

The value of k  defines the slope of the line.  Notice that potentially optimal intervals 

must be on the lower-right of the convex hull of the cloud of intervals.   

di

f(ci)

 

Figure 15: Convex hull of potentially optimal intervals 

5. Finding Potentially Optimal Intervals 

The next step is to efficiently find the set Π of potentially optimal intervals.  Jones 

et al., (1993) observe that since intervals are always divided into thirds, the only possible 

interval lengths are (t – s)3
-k

 for k = 0, 1, 2,…  Hence, many intervals have the same 

abscissa, as is evident in Figure 15.  We use this key observation to create our algorithm.   

Let Δi be the set of all intervals with largest dimension equal to di, that is, the set 

of all intervals with the same abscissas (see Figure 16a).  Let i =1, 2, …D denote a 

particular Δ or d, where D is the largest interval (the original interval).  Let Φ(Δi) be the 

element of Δi with the smallest objective value f(c), that is, the element closest to the 

horizontal axis in Figure 16b.  If there is more than one Φ(Δi) for any interval length, we 

note this and evaluate any of them as representative of the subset.   
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We calculate the angle created between fmin and each Φ(Δi) for all i with d values 

larger than that of fmin (see Figure 16c), and then create a set S containing all Φ(Δi), sorted 

by this angle from smallest to largest.  We only consider the elements of set S as extreme 

points in forming the convex hull specified by the potential optimality conditions.  

di

f(ci)

Δi

di

f(ci)

Φ(Δi)

di

f(ci)

s1

s2

s3

s4

fmin

(a) (b) (c)

Figure 16: Identifying Φ(Δi) for all intervals 

 Conceptually, the algorithm begins at fmin and adds it to the set Π.  The first 

element s1 of S (that is, the Φ(Δi) with the smallest angle from fmin) is selected, and a line 

of slope 1k  is drawn between the two points (see Figure 17a).  The element s1 is added to 

Π if it meets the second potential optimality condition.  If multiple Φ(Δi)  exist at a 

particular interval length, all are added to Π if any of them satisfies the potential 

optimality conditions.  All elements of S with di distances less than or equal to that of s1 

are removed (in Figure 17a, those elements to the left of s1), and a line between s1 and 

next element of S, s2 is then drawn (see Figure 17b).  The process repeats until the set S 

has been exhausted (see Figure 17c).   
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Figure 17: Calculating ik  and potentially optimal intervals 

The following algorithm computes Π, the set of potentially optimal intervals. 

Algorithm Potentially Optimal 

Input: S, Φ(Δi), f(Φ(Δi)), and di for all i  = 1, 2, …D, ε value, fmin  

 

Output: Set Π of potentially optimal intervals 

 

begin 
 Set place = Φ(Δ1) 

 Add place to Π 

 for ( s S  ) 

  Set ik  = [f(s) - f(place)] / (ds - dplace) 

  if (f(s) – ik ds ≤ fmin – ε|fmin| 

   Add s to Π 

  end if; 

  Remove s from S 

  Remove any elements of S with di ≤ ds 

  place = s 

 next s; 

end; 

6. The DIRECT Algorithm 

Without loss of generality, Jones et al., (1993) extend the one-dimensional 

process to multiple dimensions.  Rather than just splitting a line into smaller segments (as 

in the one-dimensional case), the DIRECT algorithm iteratively divides the 

multidimensional solution space into smaller hyper-rectangles (hence the name DIviding 

RECTangles), based on their potential optimality.   
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To initialize the algorithm, each dimension of the solution space is normalized to 

have a lower bound of zero and an upper bound of one, creating  a unit hyper-cube.  The 

algorithm evaluates the function at the center of the hyper-cube.  Next, the algorithm 

determines the set Π of potentially optimal hyper-rectangles/cubes.  During the first 

iteration, there is only one hyper-cube.  The algorithm then samples each dimension of 

each element of Π at one-third the side-lengths of the largest dimension (in the case of a 

hyper-cube, all dimensions are sampled).  The algorithm determines these locations by 

calculating 
ic e , where c is the center point, δ is one-third the side-length of the largest 

dimension, and ei is the i
th

 unit vector.  We demonstrate this for two dimensions in Figure 

18.   

(a) (b)
 

Figure 18: Sampling the initial hyper-cube 

In Figure 18a, the algorithm samples the center of the hyper-cube.  In Figure 18b, 

the algorithm samples along each of the hyper-cube’s largest dimensions (i.e., vertical 

and horizontal dimensions).  Since the interval is a hyper-cube with equal length 

dimensions, the algorithm samples all dimensions.   

Next, the algorithm computes wi (the smallest sampled value along each 

dimension) for each element of Π: 

    min , (18)i i iw f c e f c e i Q                                                                             

 

where Q is the set of the largest dimensions of a particular hyper-rectangle/cube, and ei is 

the ith unit vector.  The dimension i with the smallest wi value contains the best function 

value.  Jones et al., (1993) place this point in the largest sub-interval by first dividing the 
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original hyper-rectangle/cube along the dimension with the smallest wi.  The process 

continues for the dimension with the next smallest wi value (see Figure 19). 

(a) (b) (c)
 

Figure 19: Division of the initial hyper-cube 

In Figure 19a, the top sampled point (open dot) has the best objective value, so 

the vertical dimension contains the smallest wi value.  In Figure 19b, this dimension is 

divided first, and in Figure 19c, the horizontal dimension is divided.  The sampled points 

then become the centers of the new hyper-rectangles/cubes.   

 Following the division, the value of fmin is updated, and the set Π of potentially 

optimal hyper-rectangles/cubes is recalculated.  The process continues until a predefined 

number of iterations or function evaluations has been reached.   

Following Jones et al., (1993), the below pseudo-code outlines the DIviding 

RECTangles algorithm. 
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Algorithm DIRECT 

Input: objective function f, number and size of dimensions of solution space, ε value, 

maximum number of DIRECT iterations and function evaluations 

 

Output: Value and location of best solution found 

 

begin 
 Normalize solution space 

 Calculate center c of hyper-cube 

 Evaluate f at 
ic e for each dimension 

 Set min_location = center of hyper-cube 

 Set fmin = f(min_location) 

 while (iteration < max_iterations and evaluations < max_evaluations) do 

  if (iteration = 1) 

   Add Φ(Δ1) to set Π 

  else 

   Calculate set S of all Φ(Δi) 

   Identify set Π using Algorithm Potentially Optimal 

  end if; 

  for (all j ) 

   Identify longest side(s) of hyper-rectangle/cube j 

   Evaluate f at ic e for each longest dimension 

   Increase evaluations 

   Calculate wi  

   Divide j into smaller hyper-rectangles/cubes based on wi 

   Update fmin and min_location 

  next j  
  Increase iteration 

 end; 

 Convert min_location to original coordinate system 

end; 

 

a. Convergence 

Jones et al., (1993) show that DIRECT is guaranteed to converge to the 

global optimum if the objective function is continuous.  The basis of the proof relies on 

the fact that as the number of iterations goes to infinity, the size of the hyper-rectangles 

goes to zero, so DIRECT will eventually sample a point within an arbitrary distance of 

any desired point.   
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One drawback to the DIRECT algorithm is that the distance to the global 

optimum at any iteration cannot be accurately calculated.  If the Lipschitz constant k is 

known, a lower bound can be calculated by evaluating the function at the boundaries of 

each dimension, drawing a line of slope k through each evaluated point, and intersecting 

the lines (similar to Figure 11).  In our application, finding this constant would be as 

difficult as solving the problem to optimality.   

As noted in Chapter III.D.2, we can calculate a theoretical (but likely 

infeasible) lower bound to the SRRA+C objective value.  We determine the best possible 

network flow value by simply calculating network flow with virtually no propagation loss 

between APs.  We then add the best possible coverage shortfall value (which is zero), and 

the result is a lower bound to the function.  The value is likely infeasible, but this method 

can at least provide some metric to gauge the progress of the DIRECT algorithm.  We 

examine this in further detail in Chapter IV.B.4. 

b. Performance and Limitations 

Following Jones et al., (1993) and Finkel (2003), we assess our 

implementation of DIRECT using several test functions, including the Six-Hump 

Cambelback (two dimensions),  Branin Function (two dimensions) Shekel S5 (four 

dimensions), and Hartman H6 (six dimensions).  We find our implementation to yield 

similar (but not identical) performance results.  Specifically, we find our implementation 

requires more function evaluations to obtain the same level of relative error.  This 

disparity may be due to a difference in counting techniques, or computational 

inefficiencies on our part.   

The limit of precision in our implementation of the DIRECT algorithm is 

determined by our method of calculating the center of each hyper-rectangle.  We store the 

positions of each boundary for each hyper-rectangle, and compute the center point by 

finding the middle of these boundaries.  When DIRECT can no longer discern differences 

in the side lengths, it is unable to accurately find the center position, and hence cannot 

correctly evaluate the function value.   
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To determine this computational limit, we note that the side length of any 

hyper-rectangle is 3
-d

, where d is the number of times that side has been divided.  The 

limit occurs when, given the floating point precision of the storage method, 3
-d

 is 

indistinguishable from 3
-d+1

.  The double-precision floating point variables of Visual C++ 

are precise to approximately 15 digits (Microsoft, 2009).  Simple calculation shows this 

limit occurs at approximately d = 32 divisions.  While some languages (such as 

FORTRAN) are able to handle quadruple-precision floating point variables and hence 

many more divisions, we have not found this limitation of C++ to impair our ability in 

any way to find good solutions with DIRECT.  Given a coverage region of one hundred 

square kilometers, 32 divisions would yield an interval side length of approximately 5.39 

x 10
-9

 millimeters!   

F. SRRA+C WITH DIRECT 

We use the DIRECT algorithm iteratively to choose AP locations for solving the 

SRRA+C problem.  The solution space is defined by the operating area in the form of 

terrain data.  The DIRECT algorithm requires this area to be in the shape of a rectangle or 

square, to facilitate transformation into a unit hyper-cube. 

The dimensionality of the problem follows from the number of APs that can 

move, (n-1).  Each moving (i.e., non-HQ) AP has an associated (u, v) location bounded 

by the operating region, so both of these dimensions must be considered for each AP.  

Hence, the number of dimensions is 2(n-1).  A point in this solution space represents (u, 

v) coordinates for every AP.   

1. Hierarchical Decomposition 

Figure 20 summarizes the hierarchal method of solving the SRRA+C problem.  

For each iteration of DIRECT, the algorithm chooses a set of AP locations ζ.  We 

compute coverage shortfall and the SRRA solution for these locations, and we combine 

the values into the overall objective function value Ω(ζ).  The process continues until we 

reach the desired stopping criterion.  Possible criteria include elapsed time, size of 
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interval side length, and number of iterations since last objective value improvement or 

change in AP locations.  We use a desired number of DIRECT iterations. 

DIRECT Algorithm
Pick next solution σ

Solve SRRA Problem

Relax capacity contraints

Solve maximum flow 
problem for each 

destination

Solve resource allocation 
problem at each 

transmitter

Network Routing Resource Allocation

Compute
 Coverage Shortfall

Calculate point-to-point 
received signal strength and 
compare to threshold, for all 

discrete coverage areas 

Evaluate overall 
objective value

Combine coverage shortfall 
and network flow values to 

evaluate Ω(σ)

Continue if stopping 
criterion not met

 

Figure 20: Hierarchical decomposition of SRRA+C solved with DIRECT 

2. SRRA+C with DIRECT Algorithm 

The following pseudo-code outlines the SRRA+C process utilizing the DIRECT 

algorithm. 
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Algorithm SRRA+C with DIRECT 

Input: Number and characteristics of APs, desired coverage region, HQ node location, 

minimum flow requirement, map data, DIRECT stopping criteria, and ε value (for 

DIRECT) 

 

Output: WMN value; location, traffic routing and power allocations for all APs; client 

received signal strength at each discrete map location (u,v) 

 

begin 
 Store map data 

 while (DIRECT stopping criterion not true) do 

  Calculate AP locations using Algorithm DIRECT 

  Calculate coverage shortfall value 

  Calculate network flow values using Algorithm SRRA 

  Calculate overall objective value 

 end; 

end; 

G. SRRA+C DECISION SUPPORT TOOL 

To solve the SRRA+C problem, we created a graphical user interface (GUI) in 

Microsoft Visual C++ (Microsoft Corporation, 2009).  The stand-alone program reads 

text files in a generic XYZ format as input for terrain elevations.  This map information 

can be of any scale and any grid-based format (e.g., Universal Transverse Mercator 

(UTM) coordinate system).  The tool allows the user to change all input data described in 

our formulation.  See Appendix A for a complete list of inputs and outputs.  A specific 

problem and its associated solution can be saved as text files for later use.   

The program allows three different modes of radio propagation (inverse-square, 

Hata COST-231, and TIREM).  The TIREM model is accessed via a dynamic link library 

(DLL) provided by the U.S. Joint Spectrum Center.  The program can solve the SRRA+C 

problem using either enumeration or the DIRECT algorithm. 
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The program has two operating modes.  The first is a Coverage Analysis mode, 

used to solve the SRRA+C problem as described.  The user is able to input all required 

variables, including drawing the coverage region directly on a graphical display of the 

terrain map.  Figure 21 is a screenshot of our decision support tool in Coverage Analysis 

mode.  The central panel displays the terrain of the operating region (green/darker area is 

lower elevation, orange/lighter area is higher elevation).  The box on the terrain indicates 

the user-defined client coverage region.  The right panels contain controls for all input 

data.   

 

 

Figure 21:  Screenshot of decision support tool in Coverage Analysis Mode, 

displaying terrain and coverage region [color online] 
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After solving the problem, the programs displays the locations of APs and their 

associated links, and the areas in the coverage region receiving adequate client coverage 

graphically on the map.  Figure 22 is a screenshot of a completed SRRA+C optimization.  

AP locations are indicated by transmitter icons, and calculated traffic flow links are 

indicated by lines connecting APs.  Within the defined coverage region, green/lighter 

area indicates adequate coverage and red/darker area indicates coverage shortfall.   

 

 

Figure 22:  Screenshot of completed SRRA+C optimization, indicating network 

topology and coverage shortfall [color online] 
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The other operating mode is a Point-to-Point Analysis mode.  This mode is used 

to compute point-to-point losses, received signal strengths, and theoretical link capacities 

between any two points.  A side-view of the terrain profile, as well as LOS paths and the 

first Fresnel zone, are displayed graphically by the tool (see Figure 23).  This analysis 

mode is useful for examining proposed site locations, as well as tuning the inputs of the 

Coverage Analysis mode to provide desired output.   

 

 

Figure 23:  Screenshot of decision support tool in Point-to-Point Analysis mode, 

displaying path propagation and elevation profile [color online] 
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IV. ANALYSIS AND RESULTS 

Our analysis of the SRRA+C formulation and solution methods begins with field 

testing to validate to each portion of the objective function, coverage and network flow.  

We then conduct an analysis of the formulation by examining examples of the solution 

surface and considering the effects of two design variables.  Next, we use SRRA+C to 

solve small problems to gain an understanding of its operation.  We also compare the 

performance of the DIRECT solution method to total enumeration.  We then present the 

results of our network topology field tests using SRRA+C with DIRECT.  We conclude 

with general observations of our formulation and the DIRECT solution method.   

A. SRRA+C MODEL VALIDATION 

The validity of the SRRA+C formulation, specifically its ability to quantify 

network performance, rests on the accuracy of radio wave propagation and network 

throughput predictions.  Each part of the overall objective function depends on the 

algorithms associated with these predictions.  The client coverage portion of the 

formulation relies directly on received signal strength, a function of radio wave 

propagation.  Network throughput depends on received signal strength and the Shannon 

capacity formula.  We conduct simple field tests to provide some level of validation for 

each algorithm.   

1. Validation of Client Coverage Model: Received Signal Strength Test 

We use received signal strength to calculate both client coverage and the traffic 

capacity between APs.  While the Hata COST-231 model can provide a decent 

approximation of radio propagation, the criticality of accuracy inclines us to use TIREM 

for all tests.  Though TIREM is computationally more expensive than COST-231, in 

practice we find the runtime differences to be negligible. 

As discussed in Chapter III, TIREM predicts radio propagation between two 

points, given a profile of elevations between the points.  The model has proven its value 
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in many government and commercial modeling applications, but it does have its 

limitations.  It does not account for foliage, rain, man-made obstacles, and any obstacles 

not directly in the path between the two given points.  Nor does it account for any long-

term variability; the predictions are strictly deterministic.  For line-of-sight calculations, 

the difference between TIREM predictions and actual measurements has been show to 

have a mean of -2.8 dB and a standard deviation of 8.9 dB (Eppink and Kuebler, 1994).  

Considering all the variables contributing to propagation physics, this level of variation is 

very reasonable.   

To provide further validation of TIREM, we measure this difference using the 

equipment we utilize during the full network field test, over the actual terrain.  We 

conduct a point-to-point test between a fixed Cisco AP1000-series Aironet WMN AP 

(Cisco, 2009) and an Intel wireless transceiver internal to a mobile laptop computer.  We 

measure received signal strength (RSS) in dBm as a function of distance in meters.  The 

respective AP and client device gains are 6 dBi and 3.5 dBi, and the respective antenna 

heights are two meters and one meter.  Transmitting power is approximately 20 dBm.  

We conduct the test aboard Fort Ord, California over generally flat terrain consisting of 

pavement and packed gravel, with no trees or other obstructions to the LOS path.   
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The first test is conducted at the 5.8 GHz operating frequency.  We collect n = 

200 observations from 0 to 466 meters.  Using a fade margin of 10 dB, we compute the 

differences between TIREM predictions and actual observations, and find the mean of 

these differences to be -0.64 dB and the standard deviation to be 4.97.  Figure 24 

illustrates the results of this field test. 
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Figure 24:  Results of point-to-point field test of received signal strength at 5.8 GHz 
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We conduct a similar test at the 2.4 GHz operating frequency.  We collect n = 165 

observations from 0 to 464 meters.  We find the mean of the differences to be -2.65 dB 

and the standard deviation to be 7.56.  Figure 25 illustrates the results of this field test.   
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Figure 25:  Results of point-to-point field test of received signal strength at 2.4 GHz 

Note in this test the actual measurements from 300 meters onward depart from the 

predicted TIREM values.  We believe this is due to the presence of nearby buildings at 

that end of our testing range: the radio waves may have reflected off the buildings and 

provided a stronger signal than would have otherwise been received.  If this is the case, it 

demonstrates one of the weaknesses of the TIREM model.   

 These two tests demonstrate that TIREM is capable of making very reasonable 

received signal strength predictions using our testing equipment in a real-world 
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environment.  Since our formulation of client coverage depends solely on received signal 

strength, we conclude this formulation is an acceptable method of valuing coverage.   

2. Validation of Network Flow Model: Link Capacity Test 

Our SRRA network flow model depends both on prediction of received signal 

strength and output of the Shannon formula to determine traffic capacity between any 

two nodes.  Recall the Shannon formula predicts the upper bound on the amount of 

information that can be transmitted between two points.  This theoretical limit implicitly 

assumes perfect signal modulation, and so with an accurate background noise value, 

throughput with real-world equipment is less than calculated by Shannon.   

We conduct a point-to-point field test to compare actual and Shannon-calculated 

throughput.  Utilizing the same equipment and range as the previous tests, we compute 

actual traffic flow between the mobile laptop computer and another laptop attached to the 

fixed WMN AP by transferring a very large file.  We then use TIREM and the Shannon 

capacity formula with a background noise level of -88 dBm to calculate an upper bound 

on link throughput.  We conduct the first test at 5.8 GHz, and the results are displayed in 

Figure 26: 
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Figure 26:  Results of point-to-point field test of throughput at 5.8 GHz 
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We then conduct the same test at 2.4 GHz: 
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Figure 27:  Results of point-to-point field test of throughput at 2.4 GHz 

Both tests demonstrate the difficulties of accurately predicting throughput.  While 

the previous field test demonstrates that TIREM can approximate actual received signal 

strength very well, other factors are clearly contributing to actual throughput.  These may 

include the effects of proprietary network algorithms, hardware incongruities, or aspects 

of the transferred file itself.  The single most important factor, however, is probably 

variation in background noise level.  The test range is located near the campus of 

California State University Monterey Bay, and other wireless networks (as well as a host 

of other radio-emitting devices, such as cordless phones) that cause a varying level of 

background noise (see Figure 45, the results of our background noise analysis in this 

area).  In Figures 26 and 27, a larger background noise level would lower the Shannon 

upper bound.   

Note the sharp drop in the Shannon upper bound near 400 meters in Figure 27.  

These drops are present but less visible at different distances in Figures 24 and 25.  

TIREM is a conglomeration of many different propagation models, and each model is 
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used for certain input values.  We believe these drops indicate ―handoff‖ of received 

signal strength from one predictive model to the next as a result of varying distance.    

B. SRRA+C ANALYSIS 

We next conduct analysis on the SRRA+C solution space.  This provides some 

indication of the robustness of the formulation to varying environments and topology 

scenarios, as well as how likely it may be for DIRECT to find good solutions quickly.  

All instances of the use of our decision support tool in this chapter are conducted using a 

Windows XP laptop with an Intel Core 2 Duo processor operating at 2.16 GHz and 2 GB 

of RAM.  Terrain information is provided by the United States Geological Survey 

(USGS) via MapMart (2009). 

1. Rank-Ordered Solutions  

We first examine the sensitivity of the objective value as a function of the rank of 

the solution.  That is, we wish to determine how good the optimal and near-optimal 

solutions are in relation to the rest of the possible solutions.  If the optimal solutions are 

significantly better than any other, then it may be difficult for DIRECT to find those 

optimal solutions.  Recall from Chapter III that DIRECT samples the solution space using 

a set pattern.  If the optimum appears very suddenly on the solution surface, DIRECT 

may not sample near enough to the optimal valley to discern its presence.  

We conduct the analysis by using our decision support tool to enumerate all 

discrete solutions of a three AP network on Fort Ord terrain consisting of 65 x 33 grid 

locations.  The analysis enumerates 
(65)(33)

3 1

 
 

 
= 2,299,400 unique solutions in eight 

hours, 38 minutes, and 55 seconds.  We rank the solutions by objective value to produce 

the following graph: 
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Figure 28:  Sensitivity analysis of SRRA+C objective value 

The graph shows a very small number of solutions that have very undesirable 

values (on the far right), a roughly linear progression to better solutions, and a very small 

number of solutions that are significantly more desirable (far left).  This suggests that the 

surface of the SRRA+C solution space may have sharp troughs of optimality, along with 

very high peaks of bad solution values.  

2. Solution Surface 

 We next create plots of the SRRA+C solution surface.  Recall the number of 

dimensions of the SRRA+C problem is 2n-1, where n is the number of APs.  To plot in 

three dimensions, we are limited to two independent dimensions and so may only plot the 

solution surface of a two AP network: one AP is the fixed HQ node, and the other moves 

in the X and Y directions (easterly and northerly). 

We enumerate a sample two AP network over the Fort Ord terrain with the HQ 

node fixed at a central position.  With an elevation map consisting of 65 x 33 discrete 
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coverage locations, there are 
(65)(33)

2 1

 
 

 
= 2,145 unique solutions.  We plot the overall 

objective value as a function of the position of the moving AP; the results are presented 

in Figures 29 and 30.  In Figure 29, the Z axis represents the objective value (lower is 

more desirable).  Figure 30 is a contour plot of the solution surface, where darker areas 

represent more desirable solutions.  The forward corner of Figure 29 is equivalent to the 

lower-left corner of Figure 30.    

 

 

Figure 29:  Example of SRRA+C solution surface 
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Figure 30:  Contour plot of example SRRA+C solution surface 

 While it is impossible to create such figures for higher-dimensional problems, we 

can glean useful information from these plots.  First, we note the solution space does 

appear to be continuous, which is a requirement for the convergence of the DIRECT 

algorithm.  We also see further proof of the observations we drew from Figure 28: there 

appear to be many mediocre solutions (grayish areas), with a few sharp peaks of very 

undesirable solutions (white areas) and troughs of local optima (dark areas).  The 

presence of multiple local optima suggest DIRECT may fall into a bad local optimum, 

but as described in Chapter III, DIRECT is guaranteed to eventually break out and find 

the global optimum as the number of iterations goes to infinity.   

 Additionally, by comparing the solution surface with the terrain elevation (see 

Figure 41), we see that points of higher elevation seem to be more desirable.  This is in 

agreement with the general propagation principles described in Chapter II. 

3. Sensitivity to Flow Value Weight w  

Next, we examine the sensitivity of the solution to changes in w, the weight 

assigned to the network flow value in the overall objective function.  Recall that a larger 
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value of w places greater emphasis on network flow.  This should in general cause the 

network topology to be more compact, as this reduces the propagation losses between 

APs.   

We test this by examining a network of five APs aboard Fort Ord using DIRECT 

and our decision support tool.  We vary w while fixing all other variables, and run 

DIRECT for 10 iterations.   We measure the sum of the distances between each AP and 

the HQ node, the client coverage shortfall values, and the total amount of flow delivered 

to the HQ AP in kilobits per second (kbps).  The results are tabulated below. 

 

w 
Sum of Distances 

(meters) 

Coverage Shortfall 

Value 

Total Flow Delivered 

(kbps) 
100 519.99 1651.98 17375.974 

200 466.51 2044.905 23510.476 

300 428.28 1946.461 23832.668 

400 398.32 3005.367 142745.694 

500 226.09 4991.718 149682.586 

600 216.21 5327.257 143301.138 

700 216.21 5327.257 143301.138 

800 216.21 5327.257 143301.138 

900 216.21 5327.257 143301.138 

1000 222.59 6712.523 160520.929 

Table 2:  Effects of varying flow weight w on SRRA+C output 

 The results show that in general, a larger weight w increases coverage shortfall, 

and decreases the sum of the distances between the HQ node and all outlying nodes.  

Note that these generalizations do not always hold: coverage shortfall decreases when w 

is increased from 200 to 300, and the sum of distances increases when w is increased 

from 900 to 1000.   

These nonmonotonicities result from our implementation of the subgradient 

method within the SRRA+C algorithm.  Recall, that following Xiao et al., (2004), we use 

the subgradient method to solve the SRRA problem and determine optimal network flow 

for given AP locations.  We run the subgradient method to a given number of iterations – 

not to optimality—and use the best dual objective value found as an estimate for network 

flow.  The distance from convergence depends on the condition number of the problem (a 
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function of input values), since an ill-conditioned SRRA problem requires more iterations 

to converge.  Hence, in some cases the actual flow estimate may be nonmonotonic in the 

input variables.  The subgradient method could be run to optimality to overcome these 

small variations, but the computational cost would be prohibitive.   

4. Theoretical Lower Bound 

As noted in Chapters III.D.2 and III.E.6, we can calculate a theoretical lower 

bound on the overall objective value by solving for a ―perfect‖ network: a solution with a 

coverage shortfall value of zero and the best possible network flow.  While this solution 

may be infeasible, we consider an example to illustrate the value of this technique. 

We examine a network of five APs over a 145 acre section of Fort Ord.  We solve 

using DIRECT, and stop the algorithm at each iteration 1, 2,…30 to record the current 

overall objective value.  We plot these values and compare to our theoretical lower bound 

for this network.  The results are displayed in Figure 31. 
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Figure 31: Example comparing DIRECT solutions to a theoretical lower bound 



 81 

While the theoretical lower bound is infeasible in this problem, we see that the 

best solution value computed by DIRECT after 30 iterations (796.02) is within an order 

of magnitude of the value of the theoretical lower bound (71.413).  We emphasize this is 

not a certificate on the optimality gap, but it does tell us we are relatively close to the 

global optimum (whatever it may actually be).   

We compare the performances of DIRECT and enumeration in Chapter IV.C, but 

this example is particularly poignant in demonstrating the speed of DIRECT.  To solve 

this problem to 22 iterations of DIRECT takes slightly more than 17 seconds; to solve 

this problem using our enumeration technique would take more than 47,290 years! 

5. Pareto Frontier of Solutions by Number of APs 

We now create a Pareto frontier balancing both terms of the overall objective 

function Ω (Equation 15) as a function of the number of APs.  The information presented 

in such a Pareto frontier serves two purposes.  First, like the theoretical lower bound 

discussed in the previous section, it provides information on the relative goodness of a 

particular solution ζ by comparing it to the bounds of network flow and coverage 

shortfall.  It also can provide a quantification on the value of additional APs and the 

appropriate number of APs for a particular scenario.   

We consider a 45 acre section of Fort Ord (the same we use in our field test in 

Chapter IV.D).  We use DIRECT to solve for networks of 2,3,…8 APs with a w value of 

one, running the algorithm until the computer runs out of available memory or we reach 

the computational limit of 32 hyper-rectangle divisions (whichever comes first).  

Networks with more APs have more dimensions and a corresponding greater number of 

sub-hyper-rectangles.  Hence, in general for larger networks, the DIRECT algorithm must 

be run to more iterations to find good solutions.  There is no clear way to avoid this 

handicap when comparing networks of varying numbers of APs, but by running the 

algorithm until we reach our implementation’s limit, we provide the best answer we can 

in each case.    

Recall in Chapter III.D.2 we bound our solution space by upper and lower bounds 

on coverage shortfall and delivered network flow (Figure 8).  Similarly, we now use the 
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lower boundaries of coverage shortfall and delivered network flow as references to create 

our Pareto frontier (we suppress the upper bound on coverage shortfall because of scale, 

and the upper bound on delivered network flow because it depends on the numbers of 

APs).  The results are displayed in Figure 32.   
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Figure 32: Example Pareto frontier of SRRA+C 

The Pareto frontier shows a decreasing gain in coverage with additional APs 

beyond four.  The effect of additional APs on delivered network flow is not as 

straightforward, but clearly more APs provide greater flow.  This chart helps answer the 

questions ―How good is our network?‖ and ―How much better can we do?‖  This 

information may be of great use to a decision-maker, and the speed of the DIRECT 

algorithm makes this analysis possible.   
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6. Simple Test Case Analysis 

 We next use SRRA+C to evaluate simple network scenarios, and present 

screenshots of our decision support tool to display the solutions.  This analysis enables us 

to compare the output of SRRA+C to the intuitive solution, and to gain a better 

understanding of what to expect from SRRA+C.   

a. Square Coverage Region on Dry Lakebed 

Our first three simple tests occur on perfectly flat terrain, such as a dry 

lakebed, with no obstructions to radio propagation.  We begin with defining a simple 

square coverage region and solving for a five AP network, with the AP node placed 

directly in the middle of the coverage region.  One would expect the optimal solution to 

place each of the four APs on a distant side or corner of the coverage region.  Figure 33 

displays the output of the decision support tool for this test.   

 

Figure 33:  SRRA+C solution for a square coverage region on flat terrain [color 

online] 

As expected, the transmitters are placed on distant sides of the coverage region. 
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b. Corridor Coverage Region on Dry Lakebed 

Next, we examine the same dry lakebed terrain, but with a very long, 

narrow coverage region (a ―corridor‖) and the HQ node located at one end of the 

corridor.  One would expect three mobile APs to line up within the coverage region and 

link to their nearest neighbors.  Figure 34 displays the output of the decision support tool 

for this test, with the HQ node fixed at the right side of the coverage region.   

 

 

Figure 34:  SRRA+C solution for a corridor coverage region on flat terrain [color 

online] 

The formulation performs as expected: each AP links with its neighbor within the defined 

coverage region. 
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c. Distant Coverage Region on Dry Lakebed 

We next examine a coverage region on a dry lakebed placed at a distance 

from the HQ node.  One would expect three mobile APs to line up and provide a link 

from the distant coverage region to the HQ node.  See Figure 35 for the results of 

SRRA+C. 

 

Figure 35:  SRRA+C solution for a distant coverage region on flat terrain [color 

online] 

Again, SRRA+C provides the intuitive solution: a straight, linked path from the HQ node 

to the coverage region. 
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d. Slight Incline 

Our next two test cases occur on real-world terrain of Fort Ord, California.  

First, we examine the SRRA+C solution when the HQ node is placed near a very shallow 

hill.  One would expect a single mobile AP to be placed on the high side of the hill, 

enabling optimal radio broadcast downward onto the lower region.  See Figure 36 for 

actual SRRA+C output. 

 

Figure 36:  SRRA+C solution for a coverage region on a very shallow hill [color 

online] 

For clarity, coverage shortfall information is suppressed.  Though it is difficult to see in 

the figure, the terrain has a very slight incline rising at the bottom of the figure.  As 

expected, the mobile AP is placed higher than the HQ node on this very slight hill. 
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e. Hill Top 

Our final simple test case places a coverage region on the top of a hill, 

with the HQ node placed in the center of the coverage region.  An intuitive solution is to 

place a single mobile AP within the coverage region, at a distance from the HQ node but 

not at too low an elevation, to avoid cutting off the propagation path between the APs.  

The SRRA+C output is below. 

 

Figure 37:  SRRA+C solution for a coverage region atop a hill [color online] 

Again, coverage shortfall information is suppressed for clarity.  Counter to our intuition, 

the optimal SRRA+C solution is to place the mobile AP outside the coverage region, 

down the face of the hill.  In fact, this solution does seem rational: the lower position 

(combined with the AP antenna height of two meters) allows the AP to broadcast onto the 

face of the hill.  This maximizes the incident angle between the propagated radio waves 

and the hill surface, whereas a position nearer the top of the hill would have a much 

smaller incident angle and hence a potentially smaller received signal strength.   

While these small examples certainly do not represent a thorough 

examination of the behavior of SRRA+C, they do build confidence in its ability to 

provide sensible solutions.   
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C. SOLUTION METHOD PERFORMANCE ANALYSIS 

We next compare two methods of determining AP locations to solve the SRRA+C 

problem.  Enumeration calculates every discrete unique solution on the gridded operating 

region, and so it finds the optimal solution(s) in this discrete space.  However, this 

method is extremely slow as the number of unique solutions increases exponentially with 

both number of grid locations UV and number of APs n.  If the DIRECT method can find 

good solutions quickly, it will prove itself much more useful in solving SRRA+C. 

We compare these two solution methods by solving for several networks on 

different types of terrain.  Note the runtime required for enumeration prevents us from 

doing an exhaustive comparison, to include larger operating regions or larger networks.   

1. Comparison on Theoretical Terrain 

We first consider theoretical terrain in the general shape of a volcano, consisting 

of UV = 400 gridded locations (see Figure 38).  The terrain is not ―smooth,‖ i.e., the face 

of the volcano resembles a step function.  We create a square coverage region and place 

the HQ node on the lip of the volcano at position (12, 12).  We then solve for two, three, 

and four AP networks using both enumeration and DIRECT.  The results of this 

comparison are tabulated below. 
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Figure 38:  Contour plot of theoretical "volcano" terrain 

 

APs 
Number of 

Unique Solutions 
Enumeration Runtime 

DIRECT 

Function 

Evaluations 

DIRECT 

Runtime 

Relative Error 

of DIRECT 

Solution 

2 400 3 sec, 415 ms 54 179 ms 14.8% 

3 79,800 17 min, 1 sec, 504 ms 134 595 ms 4.85% 

4 10,586,800 2 days, 11 hr, 10 min 406 2 sec, 899 ms 7.69% 

5 1,050,739,900 245 days (extrapolated) 454 6 sec, 415 ms ? 

Table 3:  Results of enumeration and DIRECT on "volcano" terrain 

This test illustrates several important points.  First, DIRECT is substantially faster 

than enumeration, and in this example, provides decent solutions to the SRRA+C 

problems.  We note that the runtime of both solution methods increases roughly linearly 

with the number of function evaluations.  This example also illustrates that the explosive 

growth of enumeration runtime makes comparison between DIRECT and enumeration 

infeasible for anything larger than trivial networks.  Hence, we are unable to compare 

DIRECT’s results of the five AP network to an enumerated solution.   

In this example, DIRECT falls into local optima, and while running the algorithm 

for more iterations alleviates this, we maintain this example to illustrate the importance of 

terrain on the SRRA+C solution space and DIRECT’s ability to converge to optimality.  

Using the Point-to-Point analysis mode of our decision support tool on this theoretical 
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terrain, we have found circumstances where very small adjustments in AP position (less 

than a discrete grid square) have resulted in calculated link capacities increasing by 

several orders of magnitude.  This ruggedness of the solution space greatly increases the 

difficulty in finding the optimum.  As we see in the next example, actual terrain is less 

likely to cause these problems.   

2. Comparison on Actual Terrain 

We now conduct a similar comparison using a small area of actual terrain on Fort 

Ord.  The terrain consists of UV = 441 gridded locations covering 9.6 acres (see Figure 

39).   The terrain is much smoother than our hypothetical terrain in the above section, so 

we expect better performance from DIRECT.  We again create a square coverage region 

and place the HQ node directly in the middle, and solve for networks of two to five APs 

using enumeration and DIRECT.  The results of this comparison are tabulated below. 

 

Figure 39:  Contour plot of small section of Ft Ord terrain 
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APs 

Number of 

Unique 

Solutions 

Enumeration Runtime 

DIRECT 

Function 

Evaluations 

DIRECT 

Runtime 

Relative Error 

of DIRECT 

Solution 

2 441 3 sec, 713 ms 42 554 ms -1.3% 

3 97,020 17 min, 3 sec, 33 ms 114 798 ms 0.012% 

4 14,197,260 3 days, 26 min, 38 sec, 81ms 1010 9 sec, 379 ms 2.23% 

5 1,554,599,970 ≈ 331 days (extrapolated) 1114 16 sec, 954 ms ? 

Table 4:  Results of enumeration and DIRECT on actual terrain 

Not only is DIRECT much faster than enumeration, but in some cases it finds 

solutions that are actually better than enumeration (indicated by italics and negative 

relative error values)!  This is possible because of the continuous nature of the DIRECT 

algorithm.  DIRECT may place APs literally anywhere within the solution space, whereas 

the enumeration technique is limited to placing APs at discrete gridded locations.   

In fact, as the number of iterations goes to infinity, DIRECT is guaranteed to find 

a solution at least as good as enumeration, and will almost certainly find a better one.  

Enumeration considers a relatively sparse subset of solutions, whereas DIRECT 

considers an increasingly dense subset as the number of iterations goes to infinity.  Thus,  

DIRECT is very likely to find a better solution than discrete enumeration. 

While this result is exciting, it highlights the disjointedness of comparing 

continuous and discrete solution techniques.  In Chapter V, we recommend comparison 

of DIRECT with other solution methods.   

 To further illustrate the usefulness of DIRECT, we return to the example of 

Chapter IV.B.1.  We consider a three AP network on actual Fort Ord terrain consisting of 

UV = 2145 discrete grid locations.  Recall we enumerate the 2,299,400 unique solutions 

in eight hours, 38 minutes, and 55 seconds, and then present the solution objective value 

as a function of solution rank.  We now run DIRECT on this same network and terrain.  

The results appear in Figure 40. 
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Figure 40:  Comparison of enumeration and DIRECT solution objective values on 

actual terrain 

 The left chart displays the results of enumeration over all unique solutions.  The 

right chart displays an extreme close-up of the minima of the left chart, comparing the 

results of DIRECT and enumeration.  DIRECT not only finds an answer slightly better 

than enumeration, but it does so in only two seconds and 50 milliseconds, requiring a 

total of just 71 function evaluations.   

D. FIELD TESTING 

Our final analysis of SRRA+C with DIRECT is a full network field experiment 

aboard Fort Ord, conducted in collaboration with the Hastily-Formed Networks (HFN) 

Research Group at the Naval Postgraduate School.  We use the same testing equipment as 

described in Chapter IV.A.  Client coverage is provided via 802.11b/g protocol (2.4 GHz) 

and the backhaul network is provided via 802.11a protocol (5.8 GHz). 

1. Operating Region 

The operating region for our field experiment is a 45 acre rectangular region 

aboard Fort Ord.  The terrain has moderate foliage, and consists of grass fields, 

pavement, hard-packed gravel lots, and several buildings.  The northern half of the 
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operating region has low rolling hills, whereas the southern half is generally flat.  

Elevation ranges from 143 to 226 feet above sea level.   

Figure 41 is an overhead image of the operating region (courtesy of Google 

Maps).  Figure 42 is a three-dimensional image of the operating region, viewed from the 

northwest.  Figure 43 is an overhead contour plot of elevations.  The scales of Figures 42 

and 43 are relative to the position (606462.915 E, 4056897.317 N) UTM zone 10, with an 

easting (x dimension) scale of 8.455 meters and a northing (y dimension) scale of 10.447 

meters.  Figure 44 is a screenshot from our decision support tool of the operating region.  

Recall our decision support tool represents lower elevations as green, and higher 

elevations as orange (in black and white, these areas are respectively darker and lighter). 

 

Figure 41:  Aerial view of Fort Ord operating region [color online] [image courtesy 

of Google Maps] 
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Figure 42:  Elevation profile of operating region, viewed from the northwest 

 

 

Figure 43:  Contour plot of operating region elevation profile 
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Figure 44:  Screenshot of Fort Ord operating region using decision support tool 

[color online] 

We use the Cognio Mobile Spectrum Management system (Cognio, 2005) to 

obtain an estimate of the background noise level of our operating region.  This  

information (Figure 45) is used as an input to our decision support tool.  All of the 

networks are designed using a weight w of one.  See Appendix B for a complete list of 

inputs. 

 

Figure 45:  Screenshot of Cognio Mobile Spectrum tool measuring background 

noise.  Horizontal axis represents frequency in Hz, and vertical axis represents 

background noise amplitude in dBm [color online] 
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2. Scenario Descriptions and SRRA+C with DIRECT Solutions 

We create three scenarios requiring the employment of a WMN, and then use our 

decision support tool to find AP locations and expected throughput for each scenario.  

Screenshots are used in this section to display AP locations; expected and actual 

throughput values are detailed in the next section.   

a. Distant Coverage Region 

Our first scenario requires the connection of a distant client coverage 

region with a fixed HQ node, located outside the coverage region.  For instance, 

emergency responders require on-scene network connectivity to their distant command 

post.  Given a total of three APs, an intuitive solution to this problem places one AP at 

the HQ node, one AP servicing the desired coverage region, and the other AP serving as a 

bridge between the first two.   

We use our decision support tool to define a small coverage region in the 

southwest corner of the operating region, and place the HQ node in the northeast corner.  

Our tool solves the associated SRRA+C problem with DIRECT in 452 milliseconds, 

requiring 70 function evaluations.  Figure 46 displays the output, with node labels (recall 

our decision support tool represents areas with adequate client coverage as bright green, 

and coverage shortfall as red, or respectively lighter and darker in black and white). 
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Figure 46:  Solution to distant coverage region scenario [color online] 

As expected, the third node is positioned as a link between the coverage 

region and the HQ node.  Note that the link between nodes 2 and 3 seems to follow a 

depression in the terrain, where it is more likely for the radio waves to pass unhindered. 

b. Coverage Regions of Different Thresholds 

Our second scenario requires the connection of two distant, similarly-sized 

client coverage regions of different thresholds with a fixed HQ node.  Recall from 

Chapter III a higher coverage threshold value assigns a greater value to the associated 

coverage region; failure to meet the larger threshold results in a greater penalty (coverage 

shortfall).  This higher threshold can indicate greater importance or greater expected 

client demand.  An example of such a scenario is a disaster relief operation where a 

distant HQ node is providing Internet connectivity to two separated groups with different 

numbers of expected users.  Given a total of four APs, an intuitive solution to this 

problem places one AP at the HQ node, one AP servicing the coverage region with the 

lesser threshold, and the other two APs servicing the coverage region with the greater 

threshold.   
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We use our decision support tool to define a low threshold coverage 

region in the southwest corner of the operating region, and a high threshold coverage 

region in the northeast corner.  We place the HQ node in the southeast corner.  Our tool 

solves the associated SRRA+C problem with DIRECT in 1 second and 437 milliseconds, 

requiring 162 function evaluations.  Figure 47 displays the output, with node labels. 

 

Figure 47:  Solution to differing coverage regions scenario [color online] 

As expected, the algorithm assigns two nodes to the coverage region with 

a greater threshold.  Note the difference in coverage patterns between the two regions as a 

result of the different coverage thresholds.   

c. Large Contiguous Coverage Region 

Our final scenario requires a single large contiguous coverage region.  An 

example of this scenario would be a combat patrol requiring continuous connectivity with 

the HQ node in order to relay time-sensitive intelligence.  Given a total of five APs, an 

intuitive solution to this problem distributes APs somewhat evenly throughout the 

coverage region.   
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We use our decision support tool to define the coverage region as the 

entire 45 acre operating region.  We place the HQ node in the southeast corner.  Our tool 

solves the associated SRRA+C problem with DIRECT in 2 seconds and 538 

milliseconds, requiring 166 function evaluations.  Figure 48 displays the output, with 

node labels. 

 

Figure 48:  Solution to large contiguous coverage region scenario [color online] 

The algorithm creates a ring network topology that does indeed roughly 

spread the APs throughout the coverage region.  Dead spots in client coverage appear in 

areas of low elevation or behind hills.   

3. Testing 

We create the above topologies using the same Cisco Aironet APs described in 

Chapter IV.A.  We position each AP using a Global Positioning System (GPS) device, 

and place atop a two meter mast (see Figure 49).  When required, we make small 

adjustments (within five meters) to AP position to avoid broadcasting directly into trees, 

etc.  We use small portable generators and car batteries as power sources.  Network 

throughput is tested using the same methodology described in Chapter IV.A.   
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Figure 49:  Wireless mesh access point, mast, and portable generator [color online] 

4. Results 

For each scenario described in Chapter IV.D.2, we present the throughput values 

our decision support tool predicts, and the values we actually measure during the field 

test.  

a. Distant Coverage Region 

Our first scenario attempts to connect a distant coverage region to the HQ 

node via an intermediary node.  The table below displays the results.  The intermediary 

node is able to connect to the HQ node, but the node providing client coverage is unable 

to connect to the intermediary node. 

 

Node Predicted Throughput Actual Throughput 

2 1849 kbps NONE 

3 32,265 kbps 5160-6226 kbps 

Table 5:  Results of distant coverage region scenario 
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We believe this lack of connection is due to trees and chain-link fence 

obstructing the propagation path.  This highlights one weakness of the propagation 

model: recall that TIREM does not account for any vegetation or man-made structures.  

The left side of Figure 50 shows the view from node 2 to 3, and the right side shows the 

view from node 3 to 2.  A 5.8GHz signal is not very likely to penetrate such foliage. 

 

Figure 50:  View between nodes 2 and 3 of first scenario [color online] 

The actual throughput between node 3 and the HQ node is much less than 

predicted by the Shannon upper-bound.  This observation makes sense when viewed with 

the results of Figure 26.  The distance between node 3 and the HQ is less than 63 meters, 

and at shorter distances, Figure 26 shows that the Shannon curve is orders of magnitude 

greater than actual throughput.   

 

b. Coverage Regions of Different Thresholds 

The second scenario attempts to connect two separated coverage regions 

of different thresholds with the HQ node.  The table below displays the results.  All nodes 

are able to form a connection to the HQ node, and the observed throughput values are 

rather close to the predicted Shannon upper-bounds.   
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Node Predicted Throughput Actual Throughput 

2 2042 kbps 2867-3277 kbps 

3 2169 kbps 2867-3277 kbps 

4 1353 kbps 8388-9227 kbps 

Table 6:  Results of scenario with coverage regions of different thresholds 

c. Large Contiguous Coverage Region 

Our final scenario creates a large coverage region over the entire 45 acre 

operating area.  The table below displays the results.  Again, each node is able to connect 

to the HQ node, and actual throughput values are within an order of magnitude of the 

predictions. 

 

Node Predicted Throughput Actual Throughput 

2 1277 kbps 6554-7373 kbps 

3 5295 kbps 6963 kbps 

4 3605 kbps 3686 kbps 

5 2660 kbps 3277-3686 kbps 

Table 7:  Results of large contiguous coverage region scenario 

E. DISCUSSION 

Our analysis and field testing of SRRA+C with DIRECT leads us to the following 

observations: 

1. TIREM Can Provide Accurate Received Signal Strength Predictions 

The results of our point-to-point field test in Chapter IV.A.1 show that with the 

proper selection of fade margin, TIREM received signal strength predications can be very 

close to actual observations.  This provides evidence that our formulation of coverage 

shortfall is a valid method of calculating client coverage.   
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2. The Shannon Capacity Formula Can Serve as an Approximation of 

Expected Throughput 

The results of our point-to-point field test in Chapter IV.A.2 show that with an 

accurate measurement of background noise level and selection of an applicable fade 

margin, the Shannon capacity formula can approximate link capacity.  However, given 

that the formula is strictly theoretical and is especially impractical at short distances, the 

expected throughput values should only be used as a relative gauge of network 

performance.   

3. The SRRA+C Solution Surface May Have Many Local Optima 

Our analyses in Chapters IV.B.1 and IV.B.2 show that the SRRA+C solution 

surface may be very rugged, with potentially many local optima and peaks of bad 

solutions.  This increases the likelihood that DIRECT will fall into bad local optima, but 

the algorithm is guaranteed to break out eventually and converge to the global optimum.   

4. Flow Value Weight w Can Serve as a Method of Tuning Network 

Topology and Flow 

Our analysis in Chapter IV.B.1 shows that a larger flow value weight w can 

increase network flow values and decrease the sum of distances between outlying nodes 

and the HQ node.  However, our method of estimating the solution of the SRRA problem 

(Xiao et al., 2004) can cause minor nonmonotonicities in increasing w.  We can avoid this 

by solving the SRRA problem to optimality, but at a greater computational cost. 

5. SRRA+C Provides Generally Intuitive Network Topologies 

The simple test cases we analyze in Chapter IV.B.4 show that SRRA+C can 

provide seemingly reasonable AP locations.  Occasionally, SRRA+C provides solutions 

that are not intuitively obvious, but in fact do constitute good design.   
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6. DIRECT Can Provide Good Solutions to the SRRA+C Problem 

Faster Than Enumeration 

We show in Chapter IV.D.2 that in practice on actual terrain, DIRECT frequently 

finds better solutions than discrete enumeration very quickly.  DIRECT is guaranteed to 

find a solution at least as good as enumeration, and every iteration of DIRECT is 

guaranteed to provide a solution at least as good as the previous.   

7. Enumeration Has Limited Usefulness as a Method of Comparison to 

DIRECT 

The enumeration method will sample only a subset of discrete unique solutions, 

whereas the DIRECT method will, as the number of iterations goes to infinity, sample 

within an arbitrary distance of any point in the solution space.  Hence, DIRECT can 

always provide a solution at least as good as enumeration, and can virtually always 

provide a better solution.  This disjointedness, combined with the exponential growth of 

the solution space and corresponding enumeration runtimes, implies that comparison of 

the two methods should be limited to small test cases and gauging how long it takes 

DIRECT to find an answer at least as good as enumeration. 

8. SRRA+C with DIRECT Can Quickly Provide Working Network 

Designs 

Our results in Chapter IV.D show that in a realistic field test, SRRA+C solved 

with DIRECT is capable of providing working network solutions with no guesswork.  

These results are especially impressive considering the utilized backhaul network 

transmit power (100 mW) and frequency (5.8 GHz) are not particularly well-suited to 

outdoor deployments. 

9. The Underlying Predictive Models Limit the Real-World Accuracy of 

SRRA+C 

The results of the field test show that SRRA+C solutions are only as good as the 

associated predictions of received signal strength and throughput.  The usefulness of 

TIREM is limited by its inability to account for certain environmental factors such as 
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vegetation, man-made obstacles and rain.  The Shannon capacity formula is strictly 

designed to provide a theoretical upper-bound of data transmission rates.  The modular 

nature of our formulation allows other predictive models to be used, but greater 

predictive accuracy may come at a higher computational cost.   

10. There is No Guarantee Any SRRA+C Solution Will Work in the Real 

World 

Regardless of underlying predictive models, the SRRA+C formulation remains 

theoretical and provides no guarantee of real world applicability.  The formulation does 

not consider the effects of signal modulation scheme, proprietary traffic routing 

algorithms, or other device-specific variables.   

11. We Cannot Provide Certificates that Guarantee the Optimality of 

Any SRRA+C Solution 

As discussed in Chapter III, the DIRECT algorithm is guaranteed to eventually 

converge to the global optimum.  However, we cannot guarantee the optimality of any 

particular solution during the course of the algorithm, as the distance to the global 

optimum is never known.   

In the hasty applications for which we designed this technique, proof of 

optimality is not necessary.  In fact, unrelenting pursuit of optimality in such a complex 

problem wastes a very critical resource: time.  Rather, good working solutions are 

required very quickly.  As shown, our technique can provide this functionality to 

decision-makers, as well as quantitative information on the goodness of a solution using 

the theoretical lower bound and Pareto frontier analyses.  
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V. CONCLUSION AND RECOMMENDATIONS 

We conclude by summarizing our key findings, listing potential applications of 

our work, and making recommendations on how this work can be further extended. 

A. SRRA+C PROVIDES A NUMERIC GAUGE OF NETWORK 

PERFORMANCE 

We developed a method of quantifying WMN performance based on maximizing 

client coverage, subject to constraints on network flow, quantity and technical 

characteristics of APs, desired coverage region, and radio propagation over terrain.   

We calculate client coverage by summing the positive differences between 

desired and actual received signal strength at each discrete location within the user-

defined coverage region.  We estimate received signal strength using either the Hata 

COST-231 model or TIREM. 

We quantify network flow by adopting the SRRA formulation of Xiao et al., 

(2004).  The formulation simultaneously calculates traffic routing and AP transmission 

resource allocation.  We solve the problem using the subgradient method for a given 

number of iterations to estimate the value of network flow. 

We combine client coverage and network flow to produce a numeric value of a 

given WMN.  We show that the flow value weight w can be used to tune network 

performance and topology to meet certain criteria. 

Our SRRA+C formulation does not require information about device-specific 

characteristics, such as modulation scheme or routing protocol.  While this may reduce 

the predictive capabilities of the formulation, it is not impossible to add consideration of 

this information.  Further, this general approach makes it very easy to quickly model 

networks of greatly varying devices and capabilities.    
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B. SRRA+C WITH DIRECT QUICKLY PROVIDES GOOD WMN DESIGN 

SOLUTIONS 

Using our decision support tool, we compared the performance of enumeration 

and the DIRECT algorithm in solving the SRRA+C problem.  We showed that the 

DIRECT algorithm can find good solutions much faster than enumeration, and is capable 

of finding better solutions than enumeration due to DIRECT’s continuous nature.  

DIRECT is guaranteed to find the optimal solution to the SRRA+C problem as the 

number of iterations goes to infinity, and each iteration of DIRECT provides a solution at 

least as good as the previous. 

To our knowledge, we are the first to use an algorithm with proven global 

convergence to solve a WMN design problem to maximize client coverage, given 

constraints on network service, client coverage, quantity and characteristics of AP 

devices, environmental information, and radio propagation over terrain.  Our technique 

and associated tool runs on a laptop computer and does not require any additional 

software or solver licenses.   

Through several field tests, we showed that the SRRA+C problem solved with 

DIRECT can quickly provide working WMN topologies in real-world scenarios.  This 

technique requires very little technical expertise and no guesswork.   

C. POTENTIAL APPLICATIONS 

Our techniques and associated decision support tool can be used by HA/DR 

personnel and combat communications planners to quickly design WMNs to support their 

specific operations.  The decision support tool accepts map data in a generic file format 

that is widely available on the Internet, and can create network topologies for virtually 

any type of terrain and mesh AP device.    

Our decision support tool is written in the same programming language as the 

U.S. Marine Corp’s SPEED communications tool, and could be integrated into that 

software as a WMN planning module.   
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The speed of our technique makes it attractive as an engine in automated network 

design within large combat simulation models.  These models must often be run many 

thousands of iterations, and processing time is at a premium.  Our technique could 

quickly provide realistic command-and-control topologies for these simulations.   

D. RECOMMENDATIONS FOR FUTURE WORK 

1. Use of More Accurate Radio Communication Models 

We note in Chapter IV that the real-world accuracy of our technique is only as 

good as the underlying predictive models.  The modular nature of our formulation allows 

the use of more accurate radio propagation and network flow models.  Future work could 

investigate such models and compare the benefit of increased accuracy to any additional 

computational workload.  The integration of radio propagation models that consider 

vegetation and man-made obstructions, and more realistic network flow models that can 

quickly be solved exactly would be particularly interesting.   

2. Enable Use of Transmitter Restriction Zones with DIRECT 

Our decision support tool allows the user to define transmitter restriction zones, 

where APs are not allowed to be placed.  In a real-world scenario, there may be certain 

areas (such as airfields or roadways) where it is impractical or impossible to place APs, 

and this functionality would enable such restrictions.  Our enumeration technique can 

utilize this information, but in its current form the DIRECT algorithm cannot, as any such 

restriction would make the solution space discontinuous.   

Future work could leverage this functionality by determining a large but finite 

penalty for placing APs within a transmitter restriction zone.  This would discourage the 

DIRECT algorithm from choosing locations within these zones, but would not provide a 

guarantee of such behavior.  Another approach may be to create a transformation of the 

operating region by ―cutting out‖ the transmitter restriction zones and ―pasting‖ the 

remaining pieces together, creating a continuous solution space usable by DIRECT. 
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3. Method of Automatically Choosing Weight w 

Flow value weight w allows the user to tune the topology and network flow of the 

optimal SRRA+C solution.  Future work could consider methods of automatically 

choosing this weight, given desired topology or network flow information.  Another 

approach could consider calculating solutions over a range of w values, and presenting 

the results as a Pareto frontier similar to Raisanen and Whitaker (2005) and Chapter 

IV.B.5.   

4. Comparison of DIRECT with Other Solution Techniques 

We note in Chapter IV that the value of comparing the results of enumeration and 

DIRECT is limited by their respective discrete and continuous natures.  To provide a 

better understanding of how good DIRECT-provided solutions are (and how quickly they 

are obtained), future work could consider comparing DIRECT to other sampling 

algorithms or heuristic approaches.   

5. Optimizing Flow to All AP Nodes 

In the network topologies we consider, we optimize flow from all outlying nodes 

to a fixed HQ node.  In general, this approach creates tree network structures.  However, 

the SRRA formulation of Xiao et al., (2004) allows optimization to any number of 

destination nodes, and nothing in our technique forbids it.  Future research could 

investigate the effects of destination node selection on network topology.   

6. Incorporation of Directional Antenna 

Our approach assumes all antennae are omnidirectional, and hence does not 

determine antenna direction.  Future research could consider directional antennae, but 

this will likely come at a heavy computational cost.  An additional dimension would need 

to be associated with each AP to determine antenna direction, and if client and backhaul 

antennae are facing different directions, a fourth dimension must be added.  If both 

direction and tilt (vertical angle) are considered, more dimensions are required.  These 
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added dimensions would very likely increase the probability of DIRECT falling into a 

bad local optima, and many more iterations would be required to break out.   

7. Incorporation of Multiple AP Types 

One of our assumptions is that all APs have exactly the same characteristics.  

However, our formulation and implementation of DIRECT is fully capable of handling 

multiple AP types.  Future work could consider the implications of solving the SRRA+C 

problem without this assumption.    

8. Design for Network Resilience 

Future research could incorporate the notion of disruptions (accidental or 

intentional) and the implications on network design (e.g., Grotschel et al., 1995, and 

Shankar 2008).  This would enable a user to determine weak points within a potential 

network topology and make adjustments accordingly. 

9. Incorporation of Stochastic Model of Client Demand 

Our research assumes client demand is evenly distributed within a defined 

coverage region.  Future research could incorporate a stochastic model of demand, 

probabilistically distributing demand throughout a coverage region.  This would remove 

the deterministic property of our formulation and require many separate runs to provide 

statistically meaningful results, but the quick processing times of DIRECT ensures this is 

feasible.   

10. Integration of Temporal Information and Mobile Access Points 

Future research could consider the implications of coverage regions and 

associated client demands changing as a function of time, and the mobility of APs to 

support such regions and demands.  For instance, the user could associate required times 

with coverage regions, or define a track the coverage region would follow over time.  

Such a formulation would likely require a constraint or include an incentive to minimize 

the movement of individual APs on each time step or event, to ensure that the movement 
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of each AP (mounted on a vehicle or unmanned system) is realistic.  This research would 

have clear applicability to the U.S. Marine Corps’ Communications-on-the-Move 

(COTM) concept (Kreisher, 2009).   

11. Use of Parallel and Multiple Processor Technology 

Note the DIRECT algorithm lends itself naturally to parallel and multiple-

processor computing.  The initial unit hyper-cube of the solution space can be divided 

into sectors and processed separately, and the best solutions found in each sector can then 

be compared upon completion.  This property of DIRECT makes it particularly appealing 

in solving large industrial problems with extremely complex and computationally 

expensive functions, and is utilized in this fashion by He et al., (2004).  While our 

problem is designed to be solved on a laptop computer, use of multi-threading technology 

could decrease processing time and enable the consideration of very large operating 

regions and large numbers of APs.  Use of our technique on parallel computing systems 

could be used to design extremely large, city-size WMNs.   
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APPENDIX A: LIST OF DECISION SUPPORT TOOL INPUTS AND 

OUTPUTS 

A. INPUTS 

 Our decision support tool receives as input the following information: 

1. Map Data 

Map data files are stored in generic text files, and contain the following 

information: 

 Map title 

 Horizontal and vertical scales 

 Coordinates of lower-left (southwest) corner of map data 

 Number of columns and rows in map data 

 Minimum and maximum elevation points of map data 

 Tab-separated point elevations in meters 

2. Access Point and Client Device Characteristics 

 Number of APs 

 AP and client device antenna height (meters) 

 AP and client device antenna gain (dBi) 

 AP and client device antenna polarization (horizontal or vertical) 

 Transmit power from APs to other APs and clients (watts) 

 Backhaul and client coverage transmit frequencies (MHz) 

 Backhaul network channel bandwidth (Hertz) 
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3. Network Planning Information 

 Headquarters node location 

 Client coverage regions, defined by coordinates and received signal 

strength thresholds (dBm) 

 Transmitter restriction regions (not considered in this thesis), defined by 

coordinates 

 Network flow weight w 

 Fade margin 

 Direction to optimize network flow (to HQ node, or to all nodes) (not 

considered in this thesis) 

4. Environment Information 

 Conductivity of earth’s surface (S/M) 

 Surface humidity (G/M
3
) 

 Relative permittivity of earth (unitless) 

 Surface refractivity (N-Units) 

 Background noise (dBm) 

5. Propagation Options 

 Inverse square, Hata COST-231, or TIREM 

 Terrain sampling rate (for TIREM only) 

6. Optimization Options 

The following options are specific to the Coverage Analysis mode: 

 Optimization algorithm (enumeration or DIRECT) 
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 Number of iterations 

 Alternate solutions to save 

 SRRA epsilon value 

 DIRECT epsilon value 

7. Point-to-Point Analysis Options 

The following options are specific to the Point-to-Point Analysis mode: 

 Test Sites 1 and 2 locations 

 Connection type (AP to AP, AP to client, or client to AP) 

B. OUTPUTS 

1. Coverage Analysis Mode Outputs 

Our decision support tool produces the following output in Coverage Analysis 

mode, following optimization of the SRRA+C problem (all results can be saved to a text 

file): 

 Locations of all APs 

 Predicted network capacity between all APs 

 Coverage shortfall regions and actual received signal strengths 

 Coverage shortfall and network flow values 

 Overall objective value 

 Given number of alternate solutions (including above information for each 

solution) 

 Number of required function evaluations 

 Total optimization execution time 
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2. Point-to-Point Analysis Mode Outputs 

 Terrain profile 

 LOS path and first Fresnel zone 

 Propagation type (LOS, diffraction, or troposcatter) 

 Free space and total loss (dB) 

 Received signal strength (dBm) 

 Theoretical throughput (kbps) 
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APPENDIX B: LIST OF INPUTS FOR FIELD EXPERIMENT 

The following inputs were used during our network field experiment aboard Fort 

Ord: 

A. ACCESS POINT AND CLIENT DEVICE CHARACTERISTICS 

 AP antenna height: 2 meters 

 Client antenna height: 1 meter 

 AP antenna gain (backhaul): 6 dBi 

 AP antenna gain (client): 6 dBi 

 Client antenna gain: 3.5 dBi 

 AP and client device antenna gain (dBi) 

 Antenna polarization (all): horizontal 

 Transmit power from APs to other APs and clients: 0.1 watt 

 Backhaul transmit frequency: 5800 MHz 

 Client coverage transmit frequenc: 2400 MHz 

 Backhaul network channel bandwidth: 16.6 MHz  

B. NETWORK PLANNING INFORMATION 

 Client coverage thresholds: -87 dBm for all, except northeast coverage 

region in four node scenario (-75 dBm) 

 Network flow weight w: 1 

 Fade margin: 30 dB 

C. ENVIRONMENT INFORMATION 

 Conductivity of earth’s surface: 50 S/M 
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 Surface humidity: 5 G/M
3
 

 Relative permittivity of earth: 25 

 Surface refractivity: 300 N-Units 

 Background noise: -87 dBm 

D. PROPAGATION OPTIONS 

 TIREM 

 Terrain sampling rate: 1 per map unit 

E. OPTIMIZATION OPTIONS 

The following options are specific to the Coverage Analysis mode: 

 Optimization algorithm: DIRECT 

 Number of iterations: 5-10 

 SRRA epsilon value: 0.01 

 DIRECT epsilon value: 0.0001 
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